
Handling of Inertia in a Planning System

Jana Koehler J�org Ho�mann

Institute for Computer Science

Albert Ludwigs University

Am Flughafen ��

����� Freiburg� Germany

�last	name�
informatik�uni	freiburg�de

TECHNICAL REPORT No� ���

Abstract

The generation of the set of all ground actions for a given set of ADL

operators� which are allowed to have conditional e�ects and preconditions

that can be represented using arbitrary �rst�order formulas is a complex

process which heavily in�uences the performance of any planner or pre�

planning analysis method�

The paper describes a sophisticated instantiation procedure that deter�

mines so�called inertia in a given problem representation and uses them to

perform simpli�cations of formulas during the instantiation process� As a

result� many inapplicable actions are detected and ruled out from the do�

main representation yielding a much smaller search space for the planner�

May ����

� Introduction

A planning system that handles a more expressive language than STRIPS requires
sophisticated algorithmic solutions to quite a number of problems� which have
nothing to do with the actual search process for a plan� One of these problems
concerns the computation of the set of actions as all ground instances of a given
set of operators�

The aim of the instantiation process is to generate all those ground instances
of the planning operators that are applicable in some legal world state� This
means� that the precondition of the operator should be satis�able and its ef�
fects should be consistent� On one hand� a naive instantiation procedure that
simply expands quanti�ers and enumerates all possible instantiations of oper�
ator parameters will quickly render even simple planning problems unsolvable�
On the other hand� a rather sophisticated instantiation procedure can rule out
many actions� which will never be applicable in any reachable world state or that
would�if applied�yield an inconsistent state� It should also return the most
simple syntactic representation of preconditions and e	ects�

Many planning systems do generate the complete set of actions before plan�
ning actually starts� They use this set either for the encoding of the domain
in other representation formalisms such as SAT
Kautz and Selman� ����� or for
the derivation of useful information that can help during planning� e�g�� dis�
tance heuristics
Ge	ner� ������ symmetries
Fox and Long� ������ relevant ac�
tions
Nebel et al�� ���
�� and goal orderings
Koehler� ������

When using the PDDL language
McDermott et al�� ����� to represent ADL
operators
Pednault� ������ quite complex descriptions of preconditions and ef�
fects are possible�

� arbitrary function�symbol free �rst�order logic formulas represent precon�
ditions�

� conditional e	ects have the form �when antecedent consequent� where the
antecedent can be an arbitrary precondition and the consequent is a con�
junction of literals� i�e�� an atom either occurs positively or negatively in it�
A conditional e	ect can also be universally quanti�ed�

Given such an operator� the instantiation has to replace all occurring variables�
which are either quanti�ed or occur as parameters of the operator� by those type�
consistent constants� which have been declared in the planning problem� In order
to replace all variables by constants� the instantiation process proceeds in three
phases�

�� the expansion of universal and existential quanti�ers occurring in the �rst�
order formulas eliminates most of the quanti�ed variables�

�

�� the expansion of universally quanti�ed conditional e	ects eliminates the
remaining quanti�ed variables�

�� the instantiation of operator parameters eliminates the variable parame�
ters��

In each phase� the following atomic instantiation task occurs�

Given a variable �x� a constant c and an atomic formula p� determine
the resulting instantiation p
�x�c��

This is a trivial problem per se� But after having determined p
�x�c� one
can sometimes simplify this atomic formula to FALSE or TRUE� which in turn
often leads to a further simpli�cation of the operator representation� This is the
topic of this paper� where we describe what kind of atomic simpli�cations are
performed in IPP
Koehler et al�� ���
� under which conditions� how this process
can be e�ciently implemented and how it a	ects the search space of the planning
system�

The paper is organized as follows� Section � gives an overview of the three
phases of the instantiation process� Section � de�nes the notion of inertia pred�
icates and describes how the knowledge about inertia is used to perform atomic
simpli�cations� It proves their soundness and describes how the underlying tests
can be e�ciently implemented� Section � de�nes how atomic simpli�cations can
be propagated over the operator description to further simplify their representa�
tion� Section � shows how unary inertia relations can be encoded as types to speed
up the instantiation process� Finally� in Section �� the impact of the instantiation
process on the search space of IPP is exempli�ed�

� Overview over the Instantiation Process

After having parsed the domain and problem �le into some appropriate data
structure� a basic preprocessing step renames all variables in the logical formulas
and assigns unique names to them� For example� the formula ���x� � � �x���x�
is equivalently transformed into ���x���� �x� ���x��� Then code tables are gen�
erated� which map strings to unique numbers� i�e�� we obtain one number for each
predicate name� variable name� and constant name� Internally� all subsequently
described operations work over trees of numbers representing the formulas�

Figure � shows the precondition of the remove operator from the assembly
domain
McDermott� ����� with the quanti�ers in frames and the underlined
requires predicate� which will be used throughout this paper to illustrate the
instantiation process� This predicate has two arguments� the �rst one �whole

�In IPP the assumption is made that di�erent operator parameters are instantiated with
di�erent constants� i�e�� the planner never generates actions like move�a�a��

�

being an operator parameter of type assembly and the second one �res being a
universally quanti�ed variable of type resource�

�action remove
�parameters ��part �whole � assembly�
�vars ��res � resource�
�precondition

�and � forall ��res � resource�
�imply �requires �whole �res� �committed �res �whole���

�incorporated �part �whole�
�or �and �transient�part �part �whole�

� forall ��prev � assembly�
�imply �remove�order �prev �part �whole�

�incorporated �prev �whole����
�and �part�of �part �whole�

�not � exists ��prev � assembly�
�and �assemble�order �prev �part �whole�

�incorporated �prev �whole�������

Figure �� Precondition of the remove operator from the assembly domain�

The schematic tree�like representation of this �rst�order formula is shown in
Figure �� The leaves of the tree contain the atomic formulas� IPP�s instantiation
process traverses the trees top�down and expands quanti�ers one after the other�
i�e�� it reaches the �rst quanti�er forall ��res � resource� and extracts the vari�
able �res together with its type resource� From the problem �le� IPP knows all
constants of this type� These are now used to instantiate �res�

(remove-order ?prev ?part ?whole)

forall (?prev - assembly)(transient-part ?part ?whole)

forall (?res - resource) (incorporated ?part ?whole)

AND

OR

AND

NOT

 OR
(requires ?whole ?res)

NOT

OR

(committed ?res ?whole)

(incorporated ?prev ?whole)

..........

Figure �� Tree representation of ADL formulas� Note that formulas of the form
�� � have been replaced with the equivalent ���� already during the parsing
process�

The process considers all constants one after the other� For each constant�
a copy of the subtree representing the quanti�ed formula is generated� In the

�

leaves of this tree� all occurrences of �res are replaced by the selected constant�
As we will see in Section �� this can lead to so�called atomic simpli�cations�
which replace an atomic formula by either TRUE or FALSE� In turn� the whole
tree can sometimes be simpli�ed to TRUE or FALSE� see Section � for a detailed
description�

In the case of a universal quanti�er� the resulting trees are joined by an AND�
In the case of an existential quanti�er� the trees are joined by an OR� Figure �
illustrates the result of the process�

exists (?res - resource)

?res

forall (?res - resource)

?res

AND

OR

a

a

b

b

k

k

.......

.......

Figure �� Copies of trees generated during the expansion of quanti�ers� Obvi�
ously� if one of the subtrees resulting from the expansion of a universal �existen�
tial� quanti�er can be simpli�ed to FALSE �TRUE�� then the whole formula can
be simpli�ed to FALSE �TRUE��

The expansion of quanti�ed conditional e	ects proceeds in a similar way�
Figure � shows the tree representation of the move operator from the briefcase
domain� whose conditional e	ect contains the quanti�er pre�x forall ��x � ob�
ject�� The copied trees will now also contain when nodes� i�e�� numerous partially
instantiated copies of the conditional e	ect are generated�

The process for instantiating the parameters of an operator �ts into the same
scheme� In each step� it takes a variable parameter together with the set of type�
consistent constants� For each of these constants� a copy of the tree representing
the operator is generated� and each occurrence of the parameter in this tree is
replaced with the constant� Then� the operator tree is simpli�ed� If� for example�
it�s precondition simpli�es to FALSE� the whole partially instantiated operator
can be skipped and removed from the domain� After all parameters have been
instantiated� each tree represents a ground instance �an action� of the operator�

�

forall (?x - object)

parameters

move

effectprecondition

(briefcase-at from)(?from ?to - location)

(at ?x ?to)

(briefcase-at from)

NOT

NOT

AND

WHEN
(briefcase-at ?to)

AND

(in ?x)

(at ?x ?from)

Figure �� Tree�Representation of an operator with a quanti�ed conditional e	ect�
Expanding the quanti�er forall ��x � object� results in copies of the tree starting
in the when node�

� Identi�cation of Inertia and their Use during

the Instantiation

The tree�copying process takes a variable �x and a constant c as input and tra�
verses the subformula represented in the tree� Whenever it reaches an atomic
formula p� it gets replaced with p
�x�c�� In many situations� it is worthwhile to
invest some more e	ort at this point and have a closer look at the result of the
instantiation� Under certain conditions� namely if p represents an inertia rela�
tion� one can determine that p
�x�c� must either always be TRUE or FALSE� This
can even be the case if p
�x�c� is not yet fully instantiated� Let us consider an
example from the assembly domain� The object declaration introduces a list of
objects followed by their types�

�objects doodad valve frob sprocket socket plug � assembly
charger voltmeter battery � resource

The speci�cation of the initial state contains the following instances of the requires
relation�

�init �requires frob charger� �requires sprocket charger� �requires socket voltmeter�
�requires doodad voltmeter� �requires plug voltmeter�

Given the number of declared constants for the two types� the requires relation
can be instantiated with � � � � �� di	erent type�consistent tuples� of which �
occur in the initial state�

�

The expansion of the �rst universal quanti�er that is shown framed in Fig�
ure � generates three copies of the formula tree� each containing either the par�
tially instantiated atom �requires �whole voltmeter�� �requires �whole charger�� or
�requires �whole battery�� Two observations can be made�

� If �requires �whole �res� never occurs as a positive e�ect of any operator
then the only instances of this predicate� which can hold in any state� are
those that are speci�ed in the initial state� This� for example� implies
that �requires �whole battery� can never hold and is therefore equivalent to
FALSE�

� If �requires �whole �res� never occurs as a negative e�ect of any operator
then the only instances that can be FALSE in any state are those that are not
contained in the initial state� Now� if the initial state contained all possible
ground instances of� say� �requires �whole voltmeter�� then this partially
instantiated predicate could be replaced by TRUE� All of its instances would
be initially true and thus persist in all reachable states�

In the following� we will formalize these ideas and give a precise notion of
inertia�

��� Inertia Relations

IPP proceeds over the domain and problem description and collects all used re�
lation names� For each relation it checks if it satis�es one of the following de�ni�
tions�

De�nition � A relation is a positive inertia i� it does not occur positively in an
unconditional e�ect or the consequent of a conditional e�ect of an operator�

De�nition � A relation is a negative inertia i� it does not occur negatively in
an unconditional e�ect or the consequent of a conditional e�ect of an operator�

Relations� which are positive as well as negative inertia� are simply called
inertia� Relations� which are neither positive nor negative inertia� are called
	uents� The detection of inertia and �uents is easy because in ADL� e	ects
are restricted to conjunctions of literals� Furthermore� this information can be
obtained with a single pass over the domain description� which takes almost no
time at all� In the assembly domain� the status of all relations can be inferred as
shown in Figure ��

�

number predicate name positive e	ect negative e	ect status
� available yes yes �uent
� requires no no inertia
� part�of no no inertia
� transient�part no no inertia
� assemble�order no no inertia
� remove�order no no inertia
� complete yes no negative inertia

 committed yes yes �uent
� incorporated yes yes �uent

Figure �� Inertia Relations in the Assembly Domain�

��� Atomic Simpli�cations

In order to decide if an inertia can be replaced by TRUE or FALSE one needs to
determine and count all type�consistent ground instances of an inertia predicate p
that match a partially instantiated occurrence of p�

De�nition � Let � be some type name�

dom��� � fc�� � � � � cmg

denotes the domain of � � i�e�� the set of constants having type � �

In PDDL� each constant is either explicitly declared as being of a particular
type or it has the default type object� The same applies to all operator parameters
or quanti�ed variables� Each predicate must be explicitly declared together with
its arguments� for which type names can be given or the default type is assumed�

De�nition � Let p be a predicate of arity n� Let �a � �a�� � � � � an� be the argument
vector of some partially instantiated occurrence of p where each ai is either a
constant or variable� With

V ��a� � fi � f�� � � � � ng j ai is a variableg

we denote the positions in �a that are occupied by variables�

De�nition 	 Let p be a predicate and let �a be the argument vector of some
partially instantiated occurrence of p� Let �i be the type name of position i in
predicate p� Then

MAX�p �a� �
Y

i�V ��a�

jdom��i�j

denotes the number of all possible type
consistent ground instances of p that unify
with the argument vector �a� In contrast�

N�p �a� � jf�p �c� � I j �p �c� uni�es with �p �a�gj

denotes the number of unifying ground instances of p that are contained in the
initial state I� Obviously� N�p �a� 	 MAX�p �a� holds�

It is worthwhile noticing here that IPP will remove all variables or parameters
that have an empty type� see Section � for more details� Therefore� we have
jdom��i�j
� � for each position i of any partially instantiated occurrence of the
predicate p� Thus� for any �p �a� holds MAX�p �a�
� �� As an example� let us
consider �p �a� ��requires �whole voltmeter�� for which one obtains

V ��a� � f�g �� only one variable argument ��

�� � assembly
dom�assembly� � fdoodad� valve� frob� sprocket� socket� plugg
MAX�requires �whole voltmeter� � � �� � objects can instantiate �whole ��

N�requires �whole voltmeter� � � �� � instances in the initial state contain voltmeter ��

A partially instantiated atomic formula can be simpli�ed to TRUE or FALSE if it
satis�es one of the conditions de�ned below�

De�nition
 Let �p �a� be some partially instantiated atomic formula constructed
during the instantiation process�

If p is a positive inertia and N�p �a� � �
then �p �a� is simpli�ed to FALSE�

If p is a negative inertia and N�p �a� � MAX�p �a�
then �p �a� is simpli�ed to TRUE�

In all other cases �p �a� cannot �yet� be simpli�ed and remains in the formula tree
as it is�

From the treatment of empty types� we know that MAX�p �a�
� � holds for
�p �a�� Therefore� obviously at most one of the above tests can succeed� For
example� �requires �whole battery� is a positive inertia� It can be simpli�ed to
FALSE because no requires instance from the initial state matches the argument
vector ��whole� battery�� i�e�� N�requires �whole battery�� � and the �rst test
succeeds�

That an atomic formula can sometimes be simpli�ed to TRUE is best seen in
the case when it is fully instantiated� Take� for example� �requires plug voltmeter��
This fact occurs in the initial state� so N�requires plug voltmeter�� �
� � and the
�rst test fails� However� MAX�requires plug voltmeter��

Q
i��

jdom��i�j � � and
the second test succeeds� This re�ects that �requires plug voltmeter� is initially
TRUE and will never be made FALSE because requires is a negative inertia�

�

Theorem � �Soundness of Simpli�cations�
Given a planning domain and problem� if �p �a� is simpli�ed to

��� FALSE� then no state s which is reachable from the initial state satis�es any
type
consistent ground instance of �p �a��
��� TRUE� then any state s which is reachable from the initial state satis�es all
type
consistent ground instances of �p �a��

Proof�
��� holds because if N�p �a� � � then none of the type�consistent ground instances
of �p �a� are contained the initial state� Since p is a positive inertia� no other
instances can be generated by any plan�
��� holds because if N�p �a� � MAX�p �a� then all type�consistent ground instances
are contained in the initial state and will persist in all reachable states because
p is a negative inertia�

Atomic simpli�cation requires to determine the number N�p �a� of all those
ground tuples in the initial state that unify with a given argument vector of
arbitrary length� containing variables or constants at arbitrary positions� Using
a naive solution� this means to perform a single pass over the initial state I�
testing for each fact if it uni�es with �p �a�� Obviously� the time complexity is
��jIj �nmax� where nmax denotes the maximum arity of the predicates� The test
for atomic simpli�cation has to be done for every leaf of every tree that is ever
generated during the instantiation process� The number of these leaves is likely
to be enormous� so there is a strong need for a highly e�cient method to �nd
N�p �a�� In the following� such a method is described� which allows to retrieve the
number of matching initial facts in time linear in the length of �a� i�e�� in the arity
of the predicates� O�nmax��

��� E�cient Implementation of Atomic Simpli�cations

In principle� the idea behind the implementation is as simple as this� Before
instantiation starts� perform a single pass over the initial state and create tables
in which the occurring tuples are documented� Then later determine the proper
table entry for �p �a� and look up the correct value of N�p �a�� What makes the
process complicated is that we have to deal with partially instantiated argument
vectors �a�

Let us consider the requires predicate as an example� For its argument vector
of length �� four cases can occur�

��� Both arguments are variables and thus �a � ��x�� �x��� One needs to deter�
mine the total number of occurrences of requires �with arbitrary arguments�
in the initial state�

�

��� The �rst argument is instantiated� but the second argument is a variable
and thus �a � �c�� �x��� We need the number of occurrences of requires
where the �rst argument is c��

��� Only the second argument is instantiated and �a � ��x�� c��� We need to
count the occurrences with c� at the second position�

��� Both arguments are instantiated and �a � �c�� c��� The question is whether
the initial state contains �requires c� c���

For each of these four cases� a separate table is constructed� The table entries
are computed from the initial state� The dimension of each table corresponds to
the number of instantiated positions of the argument vector� In Case ���� the
table is therefore ��dimensional and simply consists of an integer counting the
number of requires facts in the initial state� For Cases ��� and ���� a ��dimensional
table is needed� with one entry for each object that is type�consistent with the
instantiated argument� For each of these objects� the corresponding entry counts
the number of times that requires occurred in the initial state instantiated with
that object� In Case ���� a ��dimensional table is constructed� Its entries are
indexed by all pairs of type�consistent objects that can instantiate the requires
predicate� For each such pair� the entry is set to � i	 requires occurred in the
initial state instantiated with that pair� All tables are shown in Figure ��

�

�

f�g

doodad �
valve �
frob �

sprocket �
socket �
plug �

f�g

charge �
voltmeter �
battery �

f�� �g

charger voltmeter battery
doodad � � �
valve � � �
frob � � �

sprocket � � �
socket � � �
plug � � �

Figure �� The tables to represent those facts from I that match a given argument
vector for the requires predicate� Given the set of instantiated positions as �� f�g�
f�g or f�� �g� the corresponding tables are shown from left to right�

Let p be a predicate of arity n� For each subset C
 f�� � � � � ng� a table T�p C�
has to be constructed� The table is jCj�dimensional and lists one entry T�p C���c�
for each type�consistent tuple �c of constants that can possibly instantiate p at
exactly the positions in C� All entries are initially set to zero�

Note that although the number of tables is exponential in the arity of the pred�
icates� planning domain representations rarely use predicates with more than �
or � arguments�

��

De�nition
 Let �a � �a�� � � � � an� be an argument vector of size n� each ai being
either a variable or a constant� Let C � fi�� � � � � ikg be a set of possible positions�
i�e�� C
 f�� � � � � ng� where the i�� � � � ik are ordered increasingly� With

�ajC �� �ai� � � � � � aik�

we denote the restriction of �a to the positions in C�

Intuitively� the restriction of a vector to some set C
 f�� � � � � ng is obtained
by simply skipping all those positions that are not in C� but preserving the
ordering of the arguments�

Now for each ground atom �p �c� that occurs in the initial state� the following
is done�

for all sets C
 f�� � � � � ng do
increment T�p C���cjC�

endfor
���

Performing process ���� we count for all instances of p in the initial state how
often each combination of constants occurs for arbitrary sets C of positions�

De�nition � Let p be a predicate of arity n� Let �a � �a�� � � � � an� be the argument
vector of some partially instantiated occurrence of p� With

C��a� �� fi � f�� � � � � ng j ai is a constantg

we denote the positions where �a is instantiated�

During instantiation� given a partially instantiated predicate �p �a�� we deter�
mine the set C��a� of positions where the argument vector is occupied by constants�
The appropriate table T�p C��a�� is the one corresponding to that set� The entry
in this table that we want to access is the one indexed by the constants in the
current argument vector �a� i�e�� by the restriction �ajC��a� of �a to its constants�

Theorem � �Soundness of Tables�
Let the tables T be the result of performing process ��� for each fact in the initial
state� Then we have for each partially instantiated predicate �p �a��

N�p �a� � T�p C��a����ajC��a��

Proof�
Per de�nition� N�p �a� � jf�p �c� � I j �p �c� uni�es with �p �a�gj� We will show for
each fact �p �c� � I� When process ��� works on �p �c��

T�p C��a����ajC��a�� gets incremented � �p c� uni�es with �p �a� ���

��

As process ��� is performed for each fact in I� the proposition follows directly
from ���� which remains to be shown�

�� We prove the contraposition� Let �p� �c �� be a fact in I that does not unify
with �p �a�� If p�
� p� process ��� never even considers the table T�p C��a���
Otherwise� one entry in this table gets incremented when the process reaches
C � C��a�� But� as �c � does not unify with �a� there is at least one constant in
�c �jC��a� that is di	erent from the corresponding constant in �ajC��a�� Therefore� the
table entry in T�p C��a�� that gets incremented is di	erent from the one for �ajC��a��

�� Let �p �c� � I be a fact that uni�es with �p �a�� When process ���� working
on �p �c�� reaches C � C��a�� the entry T�p C��a����cjC��a�� gets incremented� As �c
is a ground instance that uni�es with �a� we have �cjC��a� � �ajC��a�� so this entry is
exactly T�p C��a����ajC��a���

During the instantiation process it remains to �nd the corresponding table
entry in order to determine the correct value of N�p �a�� Since constants are
internally kept as numbers they can in principle be used as indices into a table�
However� to directly index into the tables� one would need to de�ne tables of
arbitrary dimension� Instead� the implementation uses an implicit representation
of the tables� The appropriate address is computed by performing a sweep over
the argument vector� which takes time O�nmax�� As arities are usually small� this
running time is very close to constant anyway�

��� Ground Level Inertia

So far we have only considered the predicates which are never made true or false
by a planning operator� These were used to constrain the instantiation process�
Once the set of all actions has been determined� one can similarly de�ne the
ground facts that are never made true or false by one of the actions�

De�nition � A ground fact is a positive ground inertia i� it does not occur
positively in an unconditional e�ect or the consequent of a conditional e�ect of
an action�

De�nition �� A ground fact is a negative ground inertia i� it does not occur
negatively in an unconditional e�ect or the consequent of a conditional e�ect of
an action�

An initial fact� which is a negative ground inertia� is never made FALSE and
thus always satis�ed in all reachable world states� It can be removed from the
state description� All its occurrences in the preconditions of actions and in the
antecedents of conditional e	ects can be simpli�ed to TRUE�

��

A fact� which is a positive ground inertia and not contained in the initial state�
is never satis�ed in any reachable world state� All its occurrences in the precon�
ditions of actions and in the antecedents of conditional e	ects can be simpli�ed
to FALSE�

The remaining facts are �uents that� roughly speaking� can possibly change
their truth value during the planning process� They are therefore relevant to the
representation of the planning problem�

De�nition �� A ground fact is relevant i�

�� it is an initial fact and not a negative ground inertia� or if

� it is not an initial fact and not a positive ground inertia�

Using the table which corresponds to the fully instantiated case of the process
described in Section ���� one can �nd all relevant facts by performing a single
sweep over the initial state and the e	ects of all actions�

The simpli�ed actions and the set of all relevant facts are then used by IPP to
generate a bitvector representation for all states and actions� where each relevant
fact corresponds to a position in a bitvector�

� Simpli�cation of Operator Representations

As we have already mentioned in Section �� the instantiation process creates
copies of trees representing formulas and operators� These trees can be simpli�ed
if one of their subtrees has been simpli�ed to TRUE or FALSE� which can result
from the atomic simpli�cations performed during the instantiation process� As
soon as such an atomic simpli�cation has replaced an atomic formula by TRUE

or FALSE� the subsequently described non�atomic simpli�cation operations are
performed��

�TRUE � FALSE

TRUE � � � �

FALSE � � � FALSE

TRUE � � � TRUE

FALSE � � � �

�FALSE � TRUE

� � � � �

� � � � �

� � �� � FALSE

� � �� � TRUE

Figure
� Implemented Simpli�cations for First�Order Formulas�

�They are also performed once directly after the parsing of the domain and problem 	le�

��

The �rst�order formulas which represent the preconditions of operators and
the antecedents of conditional e	ects are simpli�ed based on the well�known tau�
tologies as shown in Figure
� Besides this� IPP implements the following simpli�
�cations�

�� If a quanti�ed variable does not occur in the quanti�ed formula� the quan�
ti�er is removed� i�e�� � �x ���y� is simpli�ed to ���y���

�� If a quanti�ed variable �x has an unknown type� which has not been declared
in the �types �eld of the domain �le or if it has an empty type� for which no
constant has been declared in the problem �le� then the quanti�ed formula
is replaced by TRUE in the case of a universal quanti�er and by FALSE in
the case of an existential quanti�er�

�� An equality between two identical variable names� �x ��x� is simpli�ed
to TRUE� An equality between two identical constants� c� � c�� is also
simpli�ed to TRUE� If the constants are di	erent� i�e�� c� � c�� the equality
is simpli�ed to FALSE� In a fully instantiated formula� all occurrences of
equalities have been replaced by TRUE or FALSE�

The simpli�cation of �rst�order formulas can reduce a whole precondition�
antecedent or consequent to TRUE or FALSE� In this case� the operator description
can be simpli�ed�

�� If the antecedent of a conditional e	ect becomes FALSE� the conditional ef�
fect is removed from the operator� In this case� the e	ect is never applicable
because it requires FALSE to hold� i�e�� the state must be inconsistent�

�� If the antecedent of a conditional e	ect becomes TRUE� the conditional
e	ect becomes unconditional�

�� If the consequent of a conditional e	ect becomes TRUE� the conditional
e	ect is removed because it does not lead to any state transition�

�� If the precondition or the unconditional e	ect of an operator becomes
FALSE� the whole operator is removed from the domain�

�� If an operator has only TRUE as its unconditional e	ect and no conditional
e	ects� then the whole operator is removed��

�Unused quanti	ed variables will usually not appear in the initial domain description� They
can� however� appear as a result of atomic simpli	cations�

�Removing e�ects or whole operators can possibly turn
uents into inertia� i�e�� one could
repeat the whole analysis procedure again� However� such a phenomenon was not observed in
any planning domain and therefore it seems not worth to invest the e�ort into such a 	xpoint
computation�

��

In the �nal set of actions� to which no simpli�cations can be applied anymore�
all unconditional e	ects are merged into a single conjunction of literals and all
conditional e	ects with identical antecedents are merged into a single conditional
e	ect�
IPP also implements various syntax checks that help to develop proper domain
representations�

�� An operator is removed �a warning is issued� but planning continues� if an
operator parameter is declared using an unknown or empty type�

�� A parameter is removed from the operator description �a warning is issued�
but the operator remains in the set� if it is declared� but nowhere used in
the preconditions or e	ects��

IPP aborts the instantiation process if it encounters one of the following situations�

�� A predicate symbol is overloaded� PDDL requires the declaration of pred�
icates� their arity and the types of their arguments� When parsing the
domain and problem �les� IPP veri�es that all occurrences of a predicate
meet the declaration�

�� An equality statement occurs in an unconditional e	ect or in the consequent
of a conditional e	ect�

�� An equality statement has less or more than two arguments�

�� A variable occurs that is neither declared as a parameter nor bound by a
quanti�er�

�� A constant occurs that has not been declared in the problem �le�

� Encoding Unary Inertia as Types

Many domains� in particular all STRIPS domains used in the planning com�
petition contain unary inertia� These are predicates of arity one� which satisfy
De�nitions � and � and thus do not occur in any of the e	ects� In other words�
the set of constants c that can ever �and will always� satisfy �p c� is exactly the
set of constants occurring as the arguments of the instances of p in the initial
state�

Obviously� this set can be seen as the encoding of type information because the
single variable argument of p can only be instantiated with one of these constants
if we want to obtain a possibly satis�able atomic formula� As a matter of fact�
in the STRIPS domains from the planning competition� all unary inertia where

�Just like unused quanti	ers� this can also happen as a result of simpli	cations�

��

intended to provide implicit type information� as there are no explicit types given
in classical STRIPS� see Figure � for an example�

�action load�truck
�parameters ��obj �truck �loc�
�precondition �and �obj �obj� �truck �truck� �location �loc�

�at �truck �loc� �at �obj �loc��
�e�ect �and �not �at �obj �loc�� �in �obj �truck��

Figure �� The load�truck operator from the logistics domain� Note the untyped
parameters and the underlined unary inertia predicates that implicitly encode
the type information�

One can easily make this implicit type information explicit and remove all
unary inertia from the domain description� The previously described instantiation
process that identi�es and simpli�es inertia will also achieve the desired simpli��
cation of unary inertia� because they are simply a special case wrt� the length of
the argument vector� However� doing it this way� the algorithm repeatedly gener�
ates copies of formula trees� only to �nd out that it can remove them immediately
afterwards because they use the �wrong objects� in some unary inertia� For ex�
ample� when instantiating the set of actions for the problem strips�log�x��

from the logistics domain used in the competition� ����� actions are generated
for which the instantiation procedure needs ��
 seconds�

Consequently� there is the need for a further optimization of the instantiation
process� which can be achieved through a separate treatment of unary inertia�
The optimization� which is described in detail in this section� encodes all the
unary inertia obj� city� truck� airplane� location and airport directly as types�
which restrict the instantiation possibilities for the arguments of the operators�
Running time for this example decreases to �� seconds��

We now give a precise notion of how implicit type information can be made
explicit� First� for each unary inertia predicate p the new type symbol �p for the
type corresponding to p is introduced�

De�nition �� Let p be an inertia predicate of arity �� The type �p corresponding
to p is de�ned as the type whose domain comprises all constants c for which �p c�
holds in the initial state I�

dom��p� � fc j �p c� � Ig

�The instantiation procedure implemented in IPP ��� that has been used in the competition
is still a bit faster� It needs only �
 seconds for this example� However� this procedure uses
a specialized algorithm which is only capable of handling conjunctive preconditions� and it
generates a total of �

�� actions because no test for ground inertia is performed�

��

New types can be constructed from other types by intersecting or subtracting
from each other the corresponding sets of constants�

De�nition �� Let �� and �� be type names� Then �� � �� and �� n �� are new
type names� Their domains are de�ned as�

dom��� � ��� � dom���� � dom����

dom��� n ��� � dom���� n dom����

After having extracted all types �p for unary inertia p from the initial state�
the type structure of the domain representation is re�ned with the types �p and
types that can be constructed from them�

De�nition �� Let o be some operator and �x be one of its parameters� Let p be
a unary inertia� If �p �x� occurs in the preconditions of o or in the antecedent of
one of its conditional e�ects� o is replaced by two new operators o� and o��

� In o�� the type � that has been declared for �x is restricted to � � �p and all
occurrences of �p �x� are replaced with TRUE�

� In o�� the type � that has been declared for �x is restricted to � n �p and all
occurrences of �p �x� are replaced with FALSE�

Similarly� quanti�ed formulas in preconditions or antecedents of conditional
e	ects are replaced�

De�nition �	 Let � � � �x � � � be some universally quanti�ed formula con

taining a unary inertia p with argument �x of type � � The formula � is replaced
with �� de�ned as

�� � � �x � � � �p �
�p �x��TRUE� � � �x � � n �p �
�p �x��FALSE�

Let � � � �x � � � be some existentially quanti�ed formula containing a unary
inertia p with argument �x� Then � is replaced with ��

�� � � �x � � � �p �
�p �x��TRUE� � � �x � � n �p �
�p �x��FALSE�

In the de�nition� �
�p �x��TRUE� and �
�p �x��FALSE� denote the formulas�
which are obtained from � if all occurrences of �p �x� have been replaced with
TRUE and FALSE� resp�

The soundness of the replacements follows from the observation that under
the restriction � � �p the atomic formula �p c� is always TRUE because only
constants c are considered which are also in dom��p�� Under the restriction � n �p
only constants c � dom��� that are not members of dom��p� are considered and
thus �p c� is always FALSE�

We formally prove the soundness of the replacements for universally quanti�ed
formulas�

�

Theorem � �Soundness of Type Encodings�
Let p be a unary inertia predicate� Let � � � �x � � � be a formula with �p �x�
being a subformula of �� Let �� be the formula � gets replaced with according to
de�nition ��� Then� for any state s that is reachable from the initial state holds

s j� � � s j� ��

Proof�
From the de�nition of �p we know that all constants c � �p occur as arguments
of p in the initial state� i�e�� N�p c� � �� For those constants c
� �p� we have
N�p c� � �� With De�nition � and Theorem �� we get for all states s that are
reachable from the initial state�

��� s j� �p c� for c � �p

��� s
j� �p c� for c
� �p

From this� we can immediately conclude for all states s that are reachable from
the initial state�

��� s j� � � s j� �
�p �x��TRUE� for c � �p

��� s j� � � s j� �
�p �x��FALSE� for c
� �p

Thus� for any such state s

s j� � �x � � � � for all c � � � s j� �
�x�c�

� for all c � � � �p � s j� �
�x�c� and
for all c � � n �p � s j� �
�x�c�

��� and ��� � for all c � � � �p � s j� �
�p �x��TRUE� and
for all c � � n �p � s j� �
�p �x��FALSE�

� s j� � �x � � � �p �
�p �x��TRUE� � � �x � � n �p �
�p �x��FALSE�

As the last formula is exactly �� as de�ned in De�nition ��� the proposition
follows�

The soundness of the replacement of operators follows from the fact that the
modi�ed operator set has the same set of ground instances that are generated by
the instantiation procedure using inertia as described in Section �� The sound�
ness of the replacement of existentially quanti�ed formulas follows with similar
arguments as in the universally quanti�ed case�

As an example� let us consider the operator from Figure � again� As there is
no explicitly de�ned type for any of the three parameters they are assigned the
default type object� When examining the �rst parameter �obj� IPP �nds that it is
used in the unary inertia predicate obj� Therefore� it generates two copies of the

��

operator� restricts the parameter types according to De�nition ��� and performs
the corresponding atomic simpli�cation of the unary inertia� The result is shown
in Figure ��

In the �rst operator� the atom TRUE can obviously be removed from the
conjunction� which leads to a simpli�ed precondition� As all constants in
the STRIPS logistics problems are de�ned to be of type object� the domain
dom�object � �obj� � dom��obj� comprises exactly those constants c for which
�obj c� is contained in the initial state�

�action load�truck���

�parameters ��obj � object � �obj �truck �loc�
�precondition �and � TRUE � �truck �truck� �location �loc�

�at �truck �loc� �at �obj �loc��

�action load�truck���

�parameters ��obj � object n�obj �truck �loc�
�precondition �and � FALSE � �truck �truck� �location �loc�

�at �truck �loc� �at �obj �loc��

Figure �� Parameters and preconditions of the two new load�truck operators�
which result from the encoding of the unary inertia predicate obj as a type�

In the second operator� the �rst atomic precondition has been replaced by
FALSE as no constant in dom�object n �obj� can satisfy �obj c�� Thus� the whole
precondition of this operator simpli�es to FALSE and it can be removed from
the operator set as it will never be applicable� Note that in the case of arbitrary
�rst�order preconditions one cannot usually expect that operators can be removed
immediately just after they have been generated�

Repeating this process for the other two parameters� always the second copy
is removed immedeately after it has been generated and thus IPP obtains the
�nal representation of the load�truck operator� which is shown in Figure ���

�action load�truck
�parameters � �obj � object � �obj

�truck � object � �truck
�loc � object � �location�

�precondition �at �truck �loc� �at �obj �loc��
�e�ect �and �not �at �obj �loc�� �in �obj �truck��

Figure ��� The new operator load�truck� which results from the encoding of all
unary inertia as types and which replaces the original operator representation�
This operator is identical with the one that is used in the typed version of this
domain�

��

� Empirical Results and Conclusion

Many examples could be presented� which nicely illustrate the bene�ts of an
instantiation procedure that takes inertia into consideration� For example� in the
movie domain used in the planning competition� � operators are declared to get
snacks� get
chips� get
dip� get
pop� get
cheese� get
crackers� Each of them has a
similar description� of which we only exemplify the get
chips operator�

get�chips
�parameters ��x � chips�
�precondition

�e�ect �have�chips��

One observes that the parameter �x is not used anywhere in the operator
description� If for example� � di	erent constants are declared for each kind of
snack� one obtains � ground instances of each operator� which are all identical
and spam the search space of the planner� In all movie problems� the goals are
reachable at time step �� but a plan can only be extracted at time step �� i�e�� a
permutation of all actions at time step � is performed by the complete search
algorithm� Not very surprisingly� this takes almost � s in IPP ��� on a Sun Ultra
���
� because ����
� actions must be tried before a solution is found� In contrast
to this� when detecting the unused parameter� only one instance is generated for
each operator� which dramatically reduces the search space down to �� actions
and thus a plan is found in only ���� s�

In the assembly domain� operators can be dramatically simpli�ed because
they contain so many inertia� For example� the complex precondition shown
in Figure � uses
 di	erent predicates� but � of them are inertia� This means
that each precondition must simplify to a formula only mentioning the �uents
incorporated and committed� For many actions� the precondition reduces to a
single atomic formula using only the incorporated predicate� IPP ��� is thus able
to solve some assembly problems� while previously versions failed already during
the instantiation� see Figure �� for selected results�

problem name actions cpu seconds search space plan length
assem�x�� ����
�� �
����� �� �
� ��� �����
assem�x�� ������ ����� ��� ��� �����
assem�x�� �������� ���� ��� �����
assem�x�� �������� �������� � ��� �
� ��
 �����

Figure ��� Performance of IPP on assembly problems on a Sun Ultra ���
��

Column � shows the number of generated actions using the instantiation pro�
cess with inertia compared to the number of all possible actions using naive

��

enumeration� The search space is measured in the number of actions IPP tries
until it �nds a plan� The last column lists the number of time steps and the
number of actions in the plan� Some other problems from this domain can be
determined as unsolvable�

The determination of ground inertia helps IPP to discover information that it
would not be able to �nd if only inertia predicates were analyzed� An interesting
example of this behavior occurs in the tower of Hanoi domain� Given the operator

move��disc��from��to� disc�

�precondition �and �smaller �to �disc� �on �disc �from� �clear �disc� �clear �to��

�e�ect �and �clear��from� �on �disc �to� �not �on �disc �from�� �not �clear �to��

which describes a legal move of discs� one notices that only a smaller disc can
be moved onto a larger disc� IPP discovers that smaller is an inertia predicate and
only generates the appropriate actions� But the action set also contains moves�
which take a disc from a smaller disc and put it on a smaller disc� Indeed� the
operator description says nothing about the relationship between the disc �from
and the moving disc �disc� i�e�� a move that takes a disc from a smaller disc and
puts it on another smaller disc seems to be a legal action�

When performing the analysis of inertia on the ground level� IPP is able
to �nd out that such moves are impossible� It detects that all instances of
�on �disc �from�� where �disc is larger than �from are never made true by any
action� i�e�� they are positive inertia� and they do not hold in the initial state�
Thus� these facts are irrelevant and all preconditions using them can be simpli�ed
to FALSE� Since all actions with FALSE as a precondition are removed from the
action set� a further reduction of the size of the planning graph is achieved� For
example� in the case of � discs� �� out of �� actions are eliminated� In the case
of � discs� ��� out of ��� actions are removed� A search space of only �������
actions results and the plan of ��� steps is found in only �� seconds�

The generation of the set of all ground actions for a given set of operators
is a complex process which heavily in�uences the performance of any planner or
pre�planning analysis method� The implementation comprises more than ����
lines of C code� which are currently cleaned up and further improved and which
will be made available to the planning community in the release of IPP ���� We
hope that the instantiation procedure will become a useful part of reusable code
that helps other researcher teams in setting up their own planners more quickly
and without dealing with the burden of reimplementing the same preprocessing
procedures again and again�

��

References

Fox and Long� ����� Fox� M� and Long� D� ������� The detection and exploita�
tion of symmetry in planning problems� Technical Report ����� Durham Uni�
versity�

Ge	ner� ����� Ge	ner� H� ������� HSP� A heuristic search planner� web docu�
mentation�

Kautz and Selman� ����� Kautz� H� and Selman� B� ������� Pushing the enve�
lope� Planning� propositional logic� and stochastic search� In Proceedings of
the ��th National Conference of the American Association for Arti�cial Intel

ligence� pages ���� ����� AAAI Press�

Koehler� ����� Koehler� J� ������� Solving complex planning tasks through ex�
traction of subproblems� In Allen� J�� editor� Proceedings of the �th Inter

national Conference on Arti�cial Intelligence Planning Systems� pages �� ���
AAAI Press� Menlo Park�

Koehler et al�� ���
� Koehler� J�� Nebel� B�� Ho	mann� J�� and Dimopoulos� Y�
����
�� Extending planning graphs to an ADL subset� In
Steel� ���
�� pages
�
� ����

McDermott� ����� McDermott� D� ������� Planning com�
petition benchmark problems� web documentation�
http���www�cs�yale�edu�users�mcdermott�hmtl�

McDermott et al�� ����� McDermott� D� et al� ������� The PDDL Planning Do

main De�nition Language� The AIPS��� Planning Competition Comitee�

Nebel et al�� ���
� Nebel� B�� Dimopoulos� Y�� and Koehler� J� ����
�� Ignoring
irrelevant facts and operators in plan generation� In
Steel� ���
�� pages ���
����

Pednault� ����� Pednault� E� ������� ADL� Exploring the middle ground be�
tween STRIPS and the Situation Calculus� In Brachman� R�� Levesque� H�� and
Reiter� R�� editors� Proceedings of the �st International Conference on Prin

ciples of Knowledge Representation and Reasoning� pages ��� ���� Toronto�
Canada� Morgan Kaufmann�

Steel� ���
� Steel� S�� editor ����
�� Proceedings of the �th European Conference
on Planning� volume ���� of LNAI� Springer�

��

