An Application of Terminological Logics to Case-based Reasoning*

Jana Koehler
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3,
D-66123 Saarbrucken, Germany
e-mail: koehler@dfki.uni-sb.de

Abstract

A key problem in case-based reasoning is
the representation, organization and main-
tenance of case libraries. While current ap-
proaches rely on heuristic and psychological-
ly inspired formalisms, terminological logics
have emerged as a powerful representation
formalism with clearly defined formal seman-
tics.

This paper demonstrates how the indexing
of case libraries can be grounded on termi-
nological logics by using them as a kind of
query language to the case library. Indices of
cases are represented as concepts in a termi-
nological logic. They are automatically con-
structed from the symbolic representation of
cases with the help of a well-defined abstrac-
tion process. The retrieval of cases from the
library is grounded on concept classification.

The theoretical approach provides the for-
mal foundation for the fully implemented
case-based planning system MRL. The use
of terminological logics allows formal proof
of properties like the correctness, complete-
ness and efficiency of the retrieval algorithm,
which has rarely been done for existing case-
based reasoning systems.

1 INTRODUCTION

Reasoning from second principles has emerged as a
new research paradigm in problem solving. Instead
of searching a solution by reasoning from scratch, this
method bases the entire problem-solving process on
the reuse and modification of previous solutions.

*This paper has been published in the Proceedings of
the 4th International Conference on Principles of Knowl-
edge Representation and Reasoning, pages 351-362, Ed.
by J. Doyle, and E. Sandewall, and P. Torasso, Morgan
Kaufmann, San Francisco 1994.

Current approaches are within the field of case-based
reasoning which is defined as a general paradigm for
reasoning from experience [Slade, 1989]. Approaches
to case-based reasoning rely mainly on psychological
theories of human cognition and have led to a wide
variety of proposals for the representation, indexing
and organization of case libraries, cf. [CBR-91, 1991;
CBR-93, 1993].

Case-based systems reason by approzimation and simi-
larity. In order to solve a new case by reusing an exis-
ting one from a case library, several reasoning tasks
have to be addressed: First, an index is derived from
the new case by extracting those of its features that
are abstract enough to make a case useful in a variety
of situations as well as concrete enough to be easily
recognizable in future situations. In most approaches,
the index vocabulary is a subset of the vocabulary used
for the symbolic representation of cases, cf. [Kolodner,

1993].

The index of the new case is used as a search key on
which the retrieval of applicable old cases is based.
The aim of retrieval 1s to determine “good cases” effi-
ctently in the library—those that make relevant predic-
tions about the current case. Besides the need for an
efficient search strategy, the retrieval problem implies
the matching problem, which is a serious bottleneck for
case-based reasoners, cf.[Kolodner, 1993; Slade, 1989;
Riesbeck and Schank, 1989]. As we cannot expect
that features of different cases coincide completely, so-
called partial matches have to be computed and cases
with best-matching indices have to be retrieved. Fi-
nally, the set of retrieved cases is ordered according to
ranking heuristics and the “best” case is determined.

Research in case-based reasoning proposes various so-
lutions to the problems of retrieval, indexing and
matching. A common characteristic of these solutions
is that they are described in an informal way. This
makes i1t difficult to compare the various approaches,
to prove their formal properties and to extend them
to other applications.

Nevertheless, practice imposes the following require-

ments on case-based reasoners:

e The behavior of a system should be predictable.
It should be possible to verify whether the system
implements the intended behavior correctly.

e The derivation of inderes should be done auto-
matic instead of “hand-coded”, which is still usual
in many approaches.

e The retrieval algorithm should find a solution to a
new case, if this solution exists in the case library.

e If no direct solution can be determined, the re-
trieval algorithm should determine the case that
best meets the search criterion.

Consequently, this implies the need for case-based rea-
soning systems with formal semantics. The retrieval
algorithm should have the following formal properties:

e Correctness: The retrieved case is guaranteed
to meet the search criterion.

e Completeness: Retrieval of existing solutions to
new cases from the case library is ensured.

e Complexity: The retrieval algorithm is proved
to be efficient, i.e. it runs in polynomial time.

A case-based reasoning system with these properties
can be expected to meet the challenge of scaling-up:
The system’s behavior remains predictable, sound and
efficient even when 1t is applied to large-scale real-
world problems. Surprisingly, it turns out that prob-
lems like the correctness and completeness of the re-
trieval algorithm have not been widely discussed in the
literature on case-based reasoning.

The work described in this paper is motivated by re-
search in case-based planning. The reuse and modi-
fication of plans is a valuable tool for improving the
efficiency of planning, because it avoids the repetition
of planning effort. Therefore, plans that have been
obtained as solutions for planning problems are stored
in plan libraries for further use. The retrieval of a
good plan from a plan library is identified as being
a serious bottleneck for plan reuse systems in [Nebel
and Koehler, 1993a; Nebel and Koehler, 1993b]. Con-
sequently, efficient and theoretically well-founded re-
trieval and update procedures for plan libraries have
to be developed.

The approach presented in this paper suggests the in-
tegration of terminological logics into a hybrid rep-
resentation formalism for case-based reasoning. Re-
trieval from and updating of case libraries are ground-
ed on a clearly defined formalism with proper seman-
tics. Their behavior becomes predictable and formal
properties like the completeness and soundness of the
retrieval algorithm can be proved.

2 THE SOLUTION

While case-based reasoning aims at developing a sci-
entific model of human memory, research in knowledge
representation and reasoning has led to concept lan-
guages of the KL-ONE family [Brachman, 1978], al-
so called terminological logics. Terminological logics
support a structured representation of abstract knowl-
edge. In contrast to earlier representation formalisms,
terminological logics possess formal semantics. The
Tarski style declarative semantics leads them to be
considered as sublanguages of predicate logic [Brach-
mann and Levesque, 1984]. With that, the mean-
ing of expressions within the formalism is clearly de-
fined and it is possible to verify whether or not the
knowledge-representation system correctly implements
the intended behavior. Furthermore, terminological
logics provide special-purpose inference algorithms like
subsumption and classification. These properties of
terminological logics clearly suggest their use in case-
based reasoning.

2.1 FORMALIZING CASE-BASED
REASONING

A case represented in a case library consists of three
major parts, cf. [Kolodner, 1993]:

e initial situation: A state description, pre, speci-
fying the preconditions, on which the solution rep-
resented in the case relies.

¢ resulting situation: The goal state, goal, that
1s achieved when the solution 1s carried out.

e solution: A solution S that solves the problem
specification of the case C' = (pre, goal).

Case-based reasoning starts with a new case in the
form of a problem specification

Chew = <prenew) gOalnew>
for which a solution has to be found in the case library.

o Given: a new case Chpey

e Wanted: a solution S,;4 from the case library

To find this solution, a search key is derived from the
problem specification, which has to reflect the main
properties of the problem. Usually, the search is done
in the state space rather than the solution space. This
means, instead of searching the case library directly
for solutions, 1t is searched for similar problem specifi-
cations. This is justified by the following observation:
the solution S,y is the result of a previous problem-
solving process, i.e. it solves an old case Cyq 1n the
sense that

Sotd E Coid

This means, a solution which is applied in an initial
situation satisfying pre achieves a resulting situation
satisfying goal. This suggests a search of the case li-
brary for previous problem specifications, i.e. old cases,
which entail the problem specification of the new case
in the sense that each solution for C,;4 1s a solution

for Chpew:

C1old ': Cnew

If this relationship between C\;y and Ci,eq holds, then
the new case has been shown to be an instance of a
case from the library. This implies that solving C\;4 1s
sufficient for solving C),cyy. Consequently, the solution
Sorq stored in Cq will solve C ey

2.2 REASONING BY APPROXIMATION

Searching a case library according to the = relation-
ship is obviously too restrictive. Such a search algo-
rithm would only retrieve solutions from the case li-
brary. But obviously, a “good” case is one that can be
easily adapted to obtain the desired solution. Further-
more, the retrieval process is based on an index that
i1s obtained from Cley 1nstead of directly taking the
specification of Cje. Therefore, an index of a case
is computed with the help of an encoding scheme w
mapping the case

Chew = <prenew) gOalnew>

to 1ts index

W(Crew) = (W(prenew), w(goalnew))

The encoding scheme formalizes an abstraction pro-
cess: A detailed specification of a particular case is
mapped to an abstract index reflecting the main fea-
tures of that case. The degree of abstraction is de-
termined by the particular encoding scheme, which is
used in the case-based reasoning system. This means
that different encoding schemes can define different de-
grees of abstraction in a case-based reasoning system.

The encoding scheme w has to possess the following
formal property:

If Cold — Cnew then w(C’Old) — w(C’new)

This theorem gives a monotonicity property of w. An
existing subset relationship between the models of the
cases Cyg and Clhey 18 preserved as a subset relation-
ship between the models of the indices w(Cyq) and
W(Cnew)~

If M¢o,,, C M¢ then Mw(Cozd) - Mw(C

old new new)

This monotonicity property of the encoding scheme en-
sures that an existing solution can be found by search-
ing the case library along the = dimension between in-
dices. Note that the inverse of the monotonicity prop-
erty does not hold in general. A case retrieved from

the library, the index of which entails the new index,
will not, with certainty, provide a solution to the new
case. This reflects reasoning by approximation. The
retrieval algorithm approximates the = relationship
between the cases when it compares the indices of the
cases. Thereby, it extends the solution set computed
by the retrieval algorithm.

The definition of a particular encoding scheme depends
on three factors:

e the representation formalism for the cases,
e the representation formalism for the indices,

e the application domain.

In Section 3, we illustrate the definition of an encod-
ing scheme for a case-based planning system. The
representation formalism for the cases is a temporal
planning logic. The representation formalism for the
indices 1s a terminological logic. The application do-
main comprises planning tasks arising in a subset of
the UNIX operating system.

2.3 REASONING BY SIMILARITY

The second aspect of case-based reasoning is reasoning
by similarity. Case-based systems compute the simi-
larity of cases by comparing the placement of the cases
in the abstraction hierarchy or by computing their dis-
tance on a qualitative or quantitative scale, cf. [Kolod-
ner, 1993]. A formalization of the notion of similarity
is beyond the scope of this paper. Nevertheless, the
encoding scheme allows to define when a case is more
specific than another one:

Definition 1 A case Cy is defined as being more spe-
cific than a case Ca, if w(Cy) = w(C2) holds for their

indices.

Remember, that a case contains three major parts: its
initial situation, its resulting situation and the solu-
tion. The entailment relation between cases can there-
fore be reduced to relations between initial and result-
ing situations. A case is an instance of a stored case

if

e the new initial situation entails the old imitial sit-
uation pregew = pregd, i.e. the solution Syy is
applicable to the new initial situation,

e the old resulting situation entails the new result-
ing situation goalyy |E goalyey, 1.6. Soq solves at
least the new problem.

Furthermore, each index w(C) = (w(pre),w(goal))
comprises two components, namely the encoding of the
initial situation, pre, and the encoding of the resulting
situation goal. Obviously, testing w(Coq) E w(Chew)
can be reduced to computing relations between the
encodings of both situations:

w(prenew) |E w(preqqd) and w(goalyq) = w(goalpew)

Strong and weak retrieval algorithms can thus be
defined. A strong retrieval algorithm determines
reusable cases by testing

w(prenew) ': w(preold) M w(gOalold) ': w(gOalnew)

This guarantees that existing solutions can be found
in the case library. Furthermore, more specific cases
are retrieved according to definition 1.

If strong retrieval fails to find a more specific case, the
search criterion is replaced by a weaker one: A weak
retrieval algorithm can test

w(prenew) ': w(preold) or w(gOalold) ': w(gOalnew)

Thus, we can ground the retrieval of cases on different
well-defined relations between indices that possess for-
mal semantics. This overcomes the problem of defining
partial matches between cases, the semantics of which
remains often unclear.

2.4 HYBRID REPRESENTATION

In this paper, we propose a hybrid representation for-
malism for case libraries: The major parts of a case,
the case entry, are represented in a formalism that
adequately represents problems and solutions in the
underlying application domain, e.g. the planning for-
malism used by a case-based planner.

The index of the case is represented as a concept in a
terminological logic. The relation | between indices
is determined by computing the subsumption relation
(denoted with C) between concepts. With that, the
retrieval of a reusable case from the case library can
be grounded on concept classification.

The encoding scheme defines the degree of abstraction
that is reflected in the indices: a given case is mapped
to an index reflecting the main properties of the case.
Note that the encoding scheme may map several spe-
cific cases to the same index. This means, the index
represents a description of an abstract class of specif-
ic cases occurring in a particular application domain.
The case related to this index represents one possible
specific instance of that class.

Terminological logics have the following advantages:

They provide indices with clearly defined semantics.
The monotonicity property of the encoding scheme
w can be proved. The encoding scheme implements
a representational shift from the vocabulary for the
symbolic representation of cases to the indexing vo-
cabulary represented in a terminological logic. This
leads to a well-defined abstraction process. Further-
more, the indexing vocabulary can be automatically
built by the case-based reasoning system: If the vo-
cabulary for the symbolic representation of cases is a

logical formalism, a case will be represented as a for-
mula in this logic. The index of the case is obtained
by a transformation of the formula with the help of
the encoding scheme. The result is a first-order logic
formula that can be interpreted as a concept definition
in the terminological logic, cf. Section 3.

The mathematical properties of various terminologi-
cal logics are well understood. In particular, termi-
nological languages with decidable subsumption rela-
tions have been identified. Remember, that retrieval
from case libraries must be efficient, i.e. the complex-
ity of the retrieval algorithm must be investigated.
The use of a terminological logic with a polynomial
subsumption algorithm ensures that the retrieval al-
gorithm runs in polynomial time as well.

Most of the indexing schemes used in case-based rea-
soning, for example discrimination networks [Feigen-
baum, 1963], restrict the case library to have a tree
structure. In using terminological logics, case libraries
are indexed on a more general lattice structure provid-
ed by the subsumption hierarchy.

3 AN EXAMPLE

The MRL system [Koehler, 1994a] is the case-based
planning component of the system PHI [Bauer et al.,
1993], a logic-based tool for intelligent help systems.
PHI integrates plan generation as well as plan recogni-
tion. Plan generation can be done from first principles
by planning from scratch and from second principles
by reusing previously generated plans with MRL [Bi-
undo et al., 1992]. The example application domain of
PHI is the UNIX mail domain where objects like mes-
sages and mailbores are manipulated by actions like
read, delete, and save.

3.1 THE PLANNING LOGIC

The logical basis of PHI and MRL is the interval-based
modal temporal logic LLP [Biundo and Dengler, 1994].
LLP provides the modal operators O (next), ¢ (some-
times), O (always) and ; (chop), the binary modal op-
erator, which expresses the sequential composition of
formulae. As in programming logics, control struc-
tures like iterations and conditionals and local vari-
ables are available, with values that may vary from
state to state.

Plans are represented by a certain class of LLP formu-
lae. They may contain, e.g. basic actions which are ex-
pressed by the execute predicate ex, the chop operator,
which is used to express the sequential composition of
plans, and control structures.

The atomic actions available to the planner are the ele-
mentary commands of the UNIX mail system. They are
axiomatized like assignment statements in program-
ming logics. State changes which are caused by exe-

cuting an action are reflected in a change of the values
of local variables which represent the mailboxes in the
mail system. For example, the axiomatization of the
delete-command which deletes a message # in a mail-
box mbox reads

YV open_flag(mbox) =T A
delete_flag(msg(x, mbox)) = F A
ex(delete(x, mbox))
— Odelete_flag(msg(x, mbox)) =T

The state of a mailbox is represented with the help of
flags. The precondition of the delete-command is that
the mailbox mbox is open, i.e. its open_flag yields the
value true (T') and that the message x has not yet been
deleted, i.e. its delete_flag yields the value false (F).
As an effect, the action sets the delete_flag of message
z in mailbox mbox to the value true in the next state.

Planning problems are represented with the help of for-
mal plan specifications in the logic LLP. They contain
the specification of an initial state, the preconditions
of the plan, and the specification of the goals that have
to be achieved by executing the plan.

As an example, assume that a plan P1 for the planning
problem “read and delete a message m in the mailbox
mybox” has to be found. As preconditions, we assume
that the mailbox mybox has already been opened and
that the message m has not yet been deleted. The
formal specification of the preconditions prep; and the
goals goalpy in the logic LLP reads as follows:

prepy: open_flag(mybox) = T A
delete_flag(msg(m, mybox)) = F

goalpy: $lread_flag(msg(m, mybox)) =T A
Oldelete_flag(msg(m, mybox)) = T]]

It should be noted that in using the logic LLP in a
planning system it becomes possible to specify tempo-
rary goals with the help of nested sometimes operators,
1.e. goals that have to be achieved at some point and
not necessarily in the end, something which could not
be done in the usual STRIPS or TWEAK type plan-
ning systems, cf. [Kautz and Selman, 1992]. In the
example, the goal specification requires the message
to be read first and then deleted.

The plan P1, which solves this planning problem, is a
simple sequence containing the actions type and delete:

P1: ex(type(m, mybox));ex(delete(m, mybox))

To obtain this plan by case-based planning in MRL,
appropriate candidate plans have to be retrieved from
the plan library. In the example, we assume that the
plan library contains the candidate plans P2 and P3:

P2: if open_flag(mbox) =T
then ex(empty_action)

else ex(mail(mbox));
ex(type(x, mbox));ex(delete(x, mbox))

P3:n:=1;
while n < length(mboz) do
if sender(msg(n, mbox)) = joe
then ex(type(n, mbox));
ex(delete(n, mbox))
else ex(empty_action);
n:=n+1
od ;
The plan P2 is an example of a conditional plan. It
contains a case analysis on the state of the mailbox
mbox: If the mailbox is open, the message & can be
read and deleted. If the mailbox is closed, we first have
to open it before the plan can be executed. The case
analysis results from incomplete information about the
preconditions for plan P2:

prepa: delete_flag(msg(x, mbox)) = F

As a precondition for P2 we only know that the mes-
sage has not been deleted, but information about the
state of the mailbox not available.

In contrast to the goal specification goalpy, the specifi-
cation of goals in goalpy specifies no temporary goals,
but a conjunctive goal:

goalpy: $lread_flag(msg(x, mbox)) =T A
delete_flag(msg(x, mbox)) = T]

The plan P3 is an example of an tterative plan read-
ing all messages from sender joe in the mailbox mboz.
The specification of its preconditions and goals con-
tains universally quantified formulae:

preps: open_flag(mbox) =T A
Va [sender(msg(x, mbox)) = joe
— delete_flag(msg(x, mbox)) = F]

goalps: & [Va [sender(msg(x, mbox)) = joe
— read_flag(msg(z, mbox)) =T A
delete_flag(msg(x, mbox)) = T']]

Only a very restricted syntactic class of LLP formulae
1s used for the specification of preconditions and goals.
For example, only implicit negation of atomic formulae
occurs in implications. Furthermore, atomic formulae
are equations assigning constants to terms of a very re-
stricted syntactic structure. The term msg(x, mbox)
denotes an arbitrary message in a mailbox. Unary
functions like read_flag and delete_flag represent fea-
tures of this message. The effects of actions are reflect-
ed in changed features.

The plans P2 and P3 can be easily adapted in order
to obtain the desired plan P1:

e P1 corresponds to the then-branch of P2 when
deleting the superfluous empty_action.

e P1 corresponds to the sequential body plan of
P3 when deleting the superfluous iterative con-
trol structure and the test on the sender of the
message.

Consequently, P2 and P3 should both be retrieved
from the case library as possible reuse candidates. Fur-
thermore, the retrieval algorithm should differentiate
between P2 and P3:

On one hand, both plans P2 and P3 are applicable in
the initial state specified for P1 because their precon-
ditions are entailed by prep;. On the other hand, P2
is more “similar” to the desired plan than the plan P3:
it reads and deletes an arbitrary message as required
in the new case P1, while P3 reads all messages from
a particular sender—an additional condition, which is
not required in P1.

The identification of P2 and P3 as appropriate
reusable cases requires abstraction from

e specific objects occurring in the specifications,
e temporary subgoal states,

e universally quantified goals.

The effect of actions which reflect in a change of fea-
tures of a message have to be preserved during the
abstraction process.

These requirements are reflected in the definition of
the encoding scheme w, which is used in MRL to map
LLP plan specifications to concepts in a terminological
logic.

3.2 THE TERMINOLOGICAL LOGIC

The terminological logic ALC [Schmidt-Schaufl and
Smolka, 1991] is chosen as a starting point for the ter-
minological part of the representation formalism for
case libraries because of its expressiveness and math-
ematical properties. Concept descriptions in ALC are
built from concepts, intersection, complements and
universal role quantifications. The logic possesses a
decidable and complete subsumption algorithm which
is PSPACE-complete. This means that deciding sub-
sumption in ALC is intractable. Remember that we
required the retrieval algorithm to be efficient, i.e. to
run in polynomial time to cope with the scaling-up
problem. To obtain polynomial complexity, two solu-
tions can be adopted:

1. Giving up completeness.

2. Restricting the terminological logic.

Giving up completeness in an application system of-
ten also implies giving up correctness, because inabil-
ity to detect existing subsumption relations may lead

to incorrect behavior of the system. In particular for
case-based systems, the incompleteness of the retrieval
algorithm leads to the following problems:

e Existing cases solving the new case may be not
found in the case library. This can lead to an
undesirable computational overhead in case-based
reasoning because the system does not reuse the
best available case during problem solving.

e Uncontrolled growth of the case library may oc-
cur. Equivalent cases are added to the library
because the incomplete subsumption algorithm is
unable to recognize the equivalence of indices.

Therefore, the second solution is adopted by restrict-
ing concept descriptions to a normal form for which
a sound, complete and polynomial subsumption algo-
rithm exists. We define a subset of ALC comprising so-
called admissible concepts that are consistent concept
descriptions in conjunctive normal form. They are on-
ly built from primitive components, 1.e. existential role
restrictions of the form IR.C' and IR.—~C' where C' is
required to be a primitive concept and R is restricted
to be a chain of primitive roles. The following sub-
sumption algorithm is defined for admissible concepts

Ca:

Definition 2 SUBS(u,t) : C2 — {true, false}
SUBS(u,t) computes its result using the rules:*

:Cz,zCy — zLCxzAy (1)
rCz — xzAyCz (2)
rCz,yCz — zVyLC=z (3)
:Ce — zCaxVy (4)

r C = (5)

Theorem 1 SUBS s sound, complete and decides the
subsumption relation in polynomial time for admissible
concepls.

The proof can be found in [Koehler, 1994b].

The expressiveness of admissible concepts is sufficient
to adequately represent the mail domain.? As an ex-
ample, consider the LLP formula

& read_flag(msg(x, mbox)) =T

The interpretation of this formula 1s a message at a
certain position in a particular matlbor at a certain
world state, the read_flag of which is set to the value

! This rule set is equivalent to a sound and complete rule
set for lattices given in [Givan and McAllester, 1992] that
decides the defined inference relation in polynomial time.
Note, that SUBS(u, t) is incomplete for arbitrary concept
descriptions in ALC.

2This property may not generalize to other application
domains, see Section 5.

true. Figure 1 illustrates a subset of the primitive con-
cepts and roles representing the mail domain. Starting
with the concept STATE, role chains can be composed,
which describe the state of a particular message at a
particular position in a particular mailbox at a certain
world state. Consequently, the admissible concept

d mbox o pos o mesg o read_flag.T

abstracts the LLP example formula.

mbox

MAILBOX
\
pos @ ?

open_flag

sender @ () © delete_flag
I | l

(senoer) (vatue) (vaLue)

Figure 1: A Subset of the Mail Terminology

3.3 DEFINING THE ENCODING SCHEME

The encoding scheme w maps LLP plan specifications
to indices in ALC on the basis of the declarative se-
mantics both logics possess. It depends on the source
logic LLP as well as on the target logic ALC.

LLP plan specifications are a restricted class of tempo-
ral logic formulae containing modal operators. In order
to map them to concept descriptions they are trans-
lated into first-order predicate logic using the method
developed in [Frisch and Scherl, 1991], which has been
extended to LLP in [Koehler and Treinen, 1993]. The
result of the translation is a formula in a predicate
logic with constraints. The constraint theory repre-
sents temporal information, e.g. which subgoal has to
hold in a particular state. In a next step, the con-
straint theory 1s eliminated, preserving the satisfiabil-
ity of the formula. The elimination of the constraint
theory implements a process of temporal abstraction:
the temporal information is eliminated from the for-
mula.

The encoding scheme abstracts from specific objects
by replacing constants with existentially quantified
variables. Furthermore, universal quantification 1s re-

placed by the weaker existential quantification. An n-
ary function is encoded as an n + 1-ary relation. Each
n + l-ary relation is encoded by n binary relations.
These abstraction operations are justified by the re-
stricted syntactic structure of terms and formulae.

After the abstraction process has been completed, the
conjunctive normal form of preconditions and goals
i1s computed. Of course, the computational effort for
this operation grows exponentially with the length of
the formulae. But remember that the subsumption
algorithm is only complete for concepts in conjunctive
normal form. Nevertheless, for pragmatic reasons it is
more efficient to compute the normal form only once
during the encoding process instead of computing it
several times during the classification of an index.

Finally, the remaining set of formulae is syntacti-
cally transformed into sets of formulae of the form
dc(x) : Jy P(e,y) A Q(y). The declarative semantics
of terminological logics allow primitive concepts to be
seen as unary predicates and primitive roles to be seen
as binary predicates. This identification can be ex-
tended to arbitrary concept descriptions, 1.e. to every
concept C' a predicate formula ¢ (2) can be associat-
ed. Consequently, a concept C' : AP.¢) corresponds to
the formula ¢ (x). A model of the formula Fz ¢ (x)
i1s a model of the concept C' and vice versa. In par-
ticular, C' is unsatisfiable if and only if Jz ¢ () is
unsatisfiable [Hollunder et al., 1990].

In the example, the following encoding of precondi-
tions and goals is obtained:?

w(prep1): I mbox o open_flag. T N
3 mbox o pos o mesg o delete_flag. F
w(goalpy): I mbox o pos o mesg o read_flag. T M
3 mbox o pos o mesg o delete_flag. T
w(preps): I mbox o pos o mesg o delete_flag.F
w(goalpa): I mbox o pos o mesg o read_flag. T M
3 mbox o pos o mesg o delete_flag. T
w(preps): I mbox o open_flag. T N
[3 mboz o pos o mesg o sender.—S U
3 mbox o pos o mesyg o delete_flag.F')
w(goalps): [mbox o pos o mesg o sender.—S U
3 mbox o pos o mesg o delete_flag. T T
[3 mboz o pos o mesg o sender.—S U
3 mbox o pos o mesg o delete_flag.T']
3.3.1 Proving the Monotonicity Theorem

To ensure that the retrieval algorithm performs pre-
dictably, the monotonicity property has to be proved

*TRUE is abbreviated to T, FALSE is abbreviated to
F, and SENDER is abbreviated to S.

for the encoding scheme used in MRL.

An old plan solving the old planning problem
(preoid, goalga) is reused as a solution for a new plan-
ning problem (prepey, goalyew) in MRL if

Prénew = Preéold and gOalold = gOalnew

can be successfully proved in the logic LLP [Koehler,
1994a). Therefore, we have to prove the following in-
stance of the monotonicity theorem:

Theorem 2
If préepew - preca then w(prepew) C w(preqq) and

if goalyg b goalyey then w(goalyq) C w(goalyey).

The proof of the theorem can be found in [Koehler,
1994b]. The correctness of the encoding scheme used
in MRL relies on the syntactic restrictions which are
imposed on terms and formulae. Nevertheless, we be-
lieve that the general idea to ground the formalization
of abstraction on the definition of an encoding scheme
is widely applicable.

3.4 FORMALIZING THE RETRIEVAL

The results of the encoding process are the admissible
concepts w(pre) and w(goal) from which the index of
a case is obtained as the pair (w(pre),w(goal)). Now,
the retrieval of a plan from the plan library is formal-
ized as follows:

Given the description of a new case, the index of this
case 1s computed first. Then, this index is classified
in the plan library. Two classification operations are
available:

e strong classification

o weak classification

Strong classification classifies the new index by com-
puting the required subsumption relations between en-
codings of preconditions and goals:

w(prenew) E w(preold) M w(gOalold) E w(gOalnew)

The result of the classification process determines the
position of the new index in the plan library. All in-
dices that are subsumed by the new index are con-
sidered as potential reuse candidates. The plans be-
longing to the subsumed indices are assumed to be
applicable in the current initial state and to reach all
of the current goals.

In the example, strong classification of the new index
(w(prep1),w(goalpy)) inserts this index at the position
shown in Figure 2. Obviously, {w(preps:),w(goalpa)) is
subsumed by the new index. According to Definition 1,
the planning problem stored in the plan entry related

to the index w(P2) is more specific than the new plan-
ning problem that has to be solved. The plan P2 is
activated as a possible reuse candidate and sent to the
plan modification module of MRL [Koehler, 1994a).
The index of plan P3 does not meet the criteria re-
quired by strong classification, since the subsumption
test between the goal concepts fails. This plan is not
considered as being similar to the desired plan.

Terminological Logic Part

TOP

w (P3)]

E
-
-

lw P1)
/ BOTTOM N

ll

]

' classification of the currentindex | \

\ 1
\ 1
\ 1

\ 1
\]

\\\Planning Logic Part !
Nops | [P P
if open

1
!
plan entries are provided |while ...do then ...)/
to plan modification ex(..)ex.. else ... /
/

plan retrieval

plan-library update

plan-entry construction
relation to the index

ex(read);
ex(delete)

Figure 2: A small Sample Case Library

Weak classification is activated when strong classifica-
tion fails to retrieve a reuse candidate. It is based on
a weaker search criterion and can classify according to
goals or preconditions:

w(prenew) E w(preold) or w(gOalold) E w(gOalnew)

Note, that every case that meets the criteria of strong
classification also meets the weaker criterion used by
weak classification. In the MRL system, plans are
reused if they are applicable in the current initial state.
Therefore, weak classification in MRL classifies accord-
ing to preconditions:

w(prenew) E w(preold)

In the example, weak classification retrieves P2 and
P3, because the subsumption test on the encodings of
preconditions is successful. Nevertheless, plan P3 is
considered as being less appropriate for the solution of
P1 than P2 according to the weaker search criterion.

Figure 2 illustrates the hybrid representation of the
plan library in MRL for the example under consid-
eration. The terminological logic part supports the
structuring of the plan library. Retrieval and update
are grounded on classification by computing the sub-
sumption hierarchy of indices. The planning logic part
supports the representation of planning knowledge in
plan entries.

3.5 RANKING OF CASES

Strong as well as weak classification can retrieve sever-
al appropriate reuse candidates from the case library.
Consequently, a ranking sequence is needed for the
candidates in order to find the best one.

Strong classification determines plans from the plan
library that are supposed

e to be applicable in the initial state and

e to achieve at least all of the current goals.

This implies that the candidate set retrieved by strong
classification may contain plans which achieve super-
fluous goals, i.e. goals that are currently unnecessary.
Actions achieving these goals have to be eliminated
from the reused plan by optimizing it. The ranking
of the candidates is therefore grounded on an estima-
tion of the optimization effort for each candidate. The
ranking heuristic estimates the number of superfluous
actions that have to be eliminated from the candidate
plan.

Observe that the subsumption hierarchy for indices
is defined such that a plan b1 achieving more atom-
ic goals than a plan b2 is placed closer to the bottom
concept than 2. Consequently, the estimated opti-
mization effort for a plan, the index of which is placed
closer to the bottom concept, 1s higher than the es-
timated optimization effort for a plan, the index of
which 1s immediately subsumed by the current index.
Therefore, strong classification only adds a case to the
solution set, if its index is immediately subsumed by
the current index.

The estimation of the optimization effort proceeds as
follows:

e The ranking heuristic compares the goal con-
cept of the current index w(goalpey) with the
goal concepts of all immediately subsumed indices
w(goalea,).

e It computes the number of primitive components,
which occur in w(goalya,), but not in w(goalyew).

e The case with the smallest number 1s selected
as the best candidate according to the ranking
heuristic.

The heuristic estimates the number of atomic subgoals
that are achieved by a candidate plan but that are

not required in the current plan specification. It as-
sumes that this number reflects the minimal number
of primitive actions in the candidate plan that have to
be eliminated. Therefore, the plan with the smallest
number is selected as the best reuse candidate and sent
to the plan modification module. If several candidates
receive the same ranking value, one of them is selected
arbitrarily.

Definition 3 Let Coa,, ..., Coa, be the set of can-
didates retrieved by strong classification of w(Cpey).
The goal concepts occurring in the indices of the can-
didates are w(goaloa,), ..., w(goalya,), the goal con-
cept occurring in the current index is w(goalpey). The
set of primitive components that occurs in a concept ¢
is denoted by PK[c], while their number is denoted by
N[c].

The optimization effort for each candidate is defined
as

OPT.(goutnra,) = N [PK[w(goazold,)] \ PK[w(goalnes)]

The ranking heuristic Hopr selects the candidate with
the smallest optimization effort:

Hopr = { Cold,|OPTw(goaloldl) =
min (OPTw(goaloldl)’ cey OPTw(goaloldn)) }

Weak classification determines plans from the plan li-
brary that are only supposed to be applicable in the
initial state.

The goal concepts of the candidate plans can be related
to the goal concept of the current case in two ways:

1. w(goalpew) E w(goalsq)
This means that we can expect the candidate plan
to achieve only a subset of the goals required in
the current case.

2. w(goalpew) € w(goalyg) and
w(gOalold) z w(gOalnew)
No subsumption relation holds for the goal con-
cepts of the candidate and the current case. We
have to expect that the candidate achieves oth-
er goals than those required in the current plan
specification.

Therefore, the ranking heuristic for candidates re-
trieved by weak classification relies on the following
assumptions:

e Every candidate is applicable in the current initial
state.

e No candidate achieves all of the current goals, i.e.
every candidate has to be modified.

Consequently, the heuristic estimates the modification
effort for each candidate as follows:

e The ranking heuristic compares the goal concept
of the current index w(goal, ey) with the goal con-
cepts w(goalyq,) of all indices occurring in the so-
lution set.

e It computes the intersection of the concepts, i.e.
the number of primitive components occurring in
w(goalpey) as well as in w(goalyyg,).

e This number measures the modification effort by
an estimation of the number of current atomic
goals that are achieved by each candidate.

The candidate with the biggest number is selected
as being the best reuse candidate, because it is as-
signed the highest “success rate” and therefore its
modification effort is estimated as being minimal. Fur-
thermore, the ranking heuristic verifies whether the
ranking value of the best candidate exceeds a low-
er bound: it requires that at least half of the prim-
itive components from w(goalyey) must be contained
in w(goalyq,). Tf this condition is satisfied, the rank-
ing heuristic assumes that the best candidate achieves
at least half of the current atomic goals.*

Definition 4 Let Cyq,, ..., Coa, be the set of candi-
dates retrieved by weak classification of w(Chew). The
goal concepts occurring in the indices of the candidates
are w(goalyg,), ... ,w(goalea,), the goal concept oc-
curring in the current indexr is w(goalpey). The set of
primative components that occurs in a concept ¢ is de-
noted by PK[c], while their number is denoted by N[¢].

The estimated success rate for each candidate is de-

fined as:
MODw(goaloldl) =
N {PK[w(goaloldl)] N PK[w(goalnew)]

The ranking heuristic Harop selects the candidate with
the biggest success rate that exceeds the lower bound:

Hurop = { Cotd, | MODy(goatpa,) =

maz (MODu(goat,ia, s MODas(goat,i,))

and

N [w oal pew
MODw(goaloldl) Z Mgz—ﬂ}

If no candidate receives a ranking value which exceeds
the lower bound, all candidates are rejected because
their modification effort is too costly. In this situa-
tion, case-based planning reports a failure and plan-
ning from scratch with the PHI planner is activated.

The ranking heuristics guide the interaction between
case-based planning and plan generation, see Figure 3.
Plan generation is activated when

“The definition of an appropriate lower bound may dif-
fer for different case-based planning systems.

e no candidate can be retrieved from the library,

e the modification effort is estimated as being too
costly for all potential candidates.

succeeds | approximation of
— =| optimization effort

_ best candidate
fails activates
plan modification

strong classification

search for applicable plan
reaching all current goals

weak classification
search for applicable plan

l/fails

‘Activation of Plan Generator

approximation of
modification effort

succeeds

below
lower bound

Figure 3: Heuristic Guidance of Case-based Planning

The update of the plan library is activated when

e no reusable plan is found and planning from
scratch 1s performed,

e the retrieved plan has to be optimized or modified.

During the update of the plan library a new plan en-
try is built. Three sources of information are avail-
able: the formal plan specification Cley, the gener-
ated or modified plan Sy¢, and the proofs performed
during deductive plan generation and plan modifica-
tion [Koehler, 1994a). The plan entry is built out of
Chew, Snew and information that i1s extracted from
the proofs. Tt is related to its index w(Ppey) that was
already computed and classified during the retrieval
process. The index determines the position of the new
plan entry in the plan library. It is now available for a
subsequent case-based planning process.

4 IMPLEMENTATION

The system MRL has been implemented as an inte-
grated part of the PHI system in SICSTUS Prolog.
The plan library can be static as well as dynamic:

A static library comprises user-predefined typical
plans. The system retrieves these plans for reuse, but
does not add new plans to the library. A dynamic plan
library grows during the lifetime of the system. MRL
starts with an empty library and incrementally adds
new plan entries to it. The system thus automatically
builds a taxonomy of abstract descriptions of typical
planning problems that occur in the application do-
main.

The application of terminological logics leads to re-
markable properties of the system:

The mapping of specific planning problems to abstract
classes helps to keep the plan library small. Only one
representative for each class is added to the plan li-
brary. Instances of planning problems which belong to
the same class can be solved by instantiation or easy
modification of the retrieved candidate plan. Further-
more, the implementation of the representational shift
from specific planning problems to abstract problem
classes with the help of the encoding scheme requires
only marginal computational costs.

The polynomial complexity of the subsumption algo-
rithms leads to an efficient retrieval of candidate plans
in polynomial time, cf. [Koehler, 1994b].

The completeness of the subsumption algorithm en-
sures that existing solutions are found in the plan li-
brary. This leads to efficiency gains of the case-based
planner compared to the generative planner because
the system can reuse any solution that exists in the
plan library.

5 RELATED WORK

Recently, the representation of plans based on termi-
nological knowledge-representation systems has led to
several approaches, which extend terminological logics
with new application-oriented representational primi-
tives for the representation of actions and plans.

One such an extension is the system RAT [Heinsohn et
al., 1991] which is based on KRZIS [Baader et al.,
1992]. RAT is able to implement reasoning about
plans by inferences in the underlying terminological
logic. The system simulates the execution of plans,
verifies the applicability of plans in particular situa-
tions and solves tasks of temporal projection.

An application of terminological logics to tasks of plan
recognition is developed in T-REX [Weida and Lit-
man, 1994). Plans in T-REX may contain conditions
and iterations as well as non-determinism in the form
of disjunctive actions.

More complex application domains may require the in-
tegration of more expressive terminological logics into
the hybrid representation formalism for case libraries.
A future direction of work is the integration of stochas-
tic approaches and the parallelization of the search.
A successful application of a probabilistic method for
NP-complete inference problems is described in [Sel-
man et al., 1992]. The usefulness of non-systematic
search strategies in planning is demonstrated in [Lan-
gley, 1992; Minton et al., 1992].

6 CONCLUSION

We have presented an application of terminological
logics as a kind of query language in case-based rea-
soning. Indices are built from concept descriptions.

The retrieval and update operations working on case
libraries are formalized as classification operations over
the taxonomy of indices.

An example taken from the field of case-based plan-
ning demonstrates the applicability of the theoretical
framework. The behavior of the case-based planner
becomes predictable and theoretical properties like the
correctness, completeness and efficiency of the retrieval
algorithm can be proved.

Acknowledgements

I am indebted to Wolfgang Wahlster for his advice
and support. I wish to thank Hans-Jurgen Profitlich
who helped me test the practical feasibility of the ap-
proach with the development of a prototypical plan
library in RAT, and Bernhard Nebel and Hans-Jurgen
Ohlbach for fruitful discussions regarding the theoret-
ical properties of the formalism. Werner Nutt and the
anonymous referees made helpful comments on a draft
version of this paper.

References

J.A. Allen, R. Fikes, and E. Sandewall, editors. Pro-
ceedings of the 2nd International Conference on Prin-
ciples of Knowledge Representation and Reasoning,
Cambridge, MA, April 1991. Morgan Kaufmann.

F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich,
and E. Franconi. An empirical analysis of optimization
techniques for terminological representation systems,
or making KRIS get a move on. In Nebel et al. 1992,
pages 270-281.

M. Bauer, S. Biundo, D. Dengler, J. Koehler, and
G. Paul. PHI - a logic-based tool for intelligent help
systems. In IJCAI-93, pages 460-466.

S. Biundo and D. Dengler. The logical language for
planning LLP. Research Report, German Research
Center for Artificial Intelligence, 1994.

S. Biundo, D. Dengler, and J. Koehler. Deductive
planning and plan reuse in a command language envi-
ronment. In Neumann 1992, pages 628-632.

R. Brachman. Structured inheritance networks. In
W. Woods and R. Brachman, editors, Research in Nat-
ural Language Understanding, pages 36-78. Bolt, Be-
ranek, and Newman Inc., Cambridge Mass., 1978.

R. Brachmann and H. Levesque. The tractability of
subsumption in frame based description languages.
Proceedings of the jJth National Conference of the
American Association for Artificial Intelligence, pages

34-37, Austin, TX, 1984. MIT Press.

CBR-91 Proceedings of the 3rd Case-Based Reasoning
Workshop, Washington, D.C.; 1991. Morgan Kauf-

man, San Mateo.

CBR-93 Proceedings of the AAAI-93 Workshop on
Case-Based Reasoning, number WS-93-01 in AAAI
Technical Report, Washington, D.C.; 1993. AAAI
Press, Menlo Park.

E.A. Feigenbaum. The simulation of natural learning
behavior. In E.A. Feigenbaum and J. Feldman, ed-
itors, Computers and Thought. Mc Graw-Hill, New
York, 1963.

A. M. Frisch and R. B. Scherl. A general framework
for modal deduction. In Allen et al. 1992, pages 196—
207.

R. Givan and D. McAllester. New results on local
inference relations. In Nebel et al. 1992, pages 403—
412.

J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Prof-
itlich. Integration of action representation in termino-
logical logics. In C. Peltason, K. Luck, and C. Kin-
dermann, editors, Proceedings of the Terminological
Logic Users Workshop. KIT-Report 95, TU Berlin,
Germany, 1991.

B. Hollunder, W. Nutt, and M. Schmidt-Schauf.
Subsumption algorithms for concept description lan-
guages. In L.C. Aiello, editor, Proceedings of the 9th
European Conference on Artificial Intelligence, pages
348-353, Stockholm, Sweden, August 1990. Clays Ltd,
England.

IJCAI-93 Proceedings of the 13th International Joint
Conference on Artificial Intelligence, Chambery,
France, August 1993. Morgan Kaufmann.

H. Kautz and B. Selman. Planning as satisfiability. In
Neumann 1992, pages 359-363.

J. Koehler and R. Treinen. Constraint deduction in
an interval-based temporal logic. In Working Notes
of the AAAI Symposium on Automated Deduction in
Nonstandard Logics. AAAT Press, Menlo Park, 1993.

J. Koehler. Flexible plan reuse in a formal framework.
In C. Backstrom and E. Sandewall, editors, Current
Trends in Al Planning. pages 171-184. I0S Press,
Amsterdam, Washington, Tokyo, 1994.

J. Koehler. Reuse of Plans in Deductive Planning Sys-

tems. PhD thesis, University of Saarland, 1994. in
German.

J. Kolodner. Case-Based Reasoning. Morgan Kauf-
man, 1993.

P. Langley. Systematic and nonsystematic search
strategies. In Proceedings of the 1st International

Conference on Artificial Intelligence Planning Sys-
tems, pages 145-152, Washington, D.C., 1992. Morgan
Kaufmann, San Mateo.

S. Minton, M. Drummond, J. Bresina, and A. Philips.
Total order vs. partial order planning: Factors influ-
encing performance. In Nebel et al. 1992, pages 83-92.

B. Nebel and J. Koehler. Plan modification versus
plan generation: A complexity-theoretic perspective.

In IJCAI-93, pages 1436-1441.

B. Nebel and J. Koehler. Plan reuse versus plan gener-
ation: A theoretical and empirical analysis. Research
Report RR-93-33, German Research Center for Artifi-
cial Intelligence (DFKI), 1993.

B. Nebel, W. Swartout, and C. Rich, editors. Proceed-
wngs of the 3rd International Conference on Principles
of Knowledge Representation and Reasoning, Cam-
bridge, MA, October 1992. Morgan Kaufmann.

B. Neumann, editor. Proceedings of the 10th European
Conference on Artificial Intelligence, Vienna, Austria,

August 1992. John Wiley & Sons.
C.K. Riesbeck and R.C. Schank. Inside Case-based

Reasoning. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1989.

M. Schmidt-Schau3 and G. Smolka. Attributive con-
cept descriptions with complements. Artificial Intells-

gence, 48:1-26, 1991.

B. Selman, H. Levesque, and D. Mitchell. A new
method for solving hard satisfiability problems. In
Proceedings of the 10th National Conference of the
American Association for Artificial Intelligence, pages

440-446, San Jose, CA, July 1992. MIT Press.

S. Slade. Case-based reasoning: A research paradigm.

The AI Magazine, 12(1):43-55, 1989.

R. Weida and D. Litman. Subsumption and recog-
nition of heterogeneous constraint networks. In Pro-
ceedings of the Tenth IEEE Conference on Artificial
Intelligence for Applications, 1994. to appear.

