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Current approaches are within the �eld of case-basedreasoning which is de�ned as a general paradigm forreasoning from experience [Slade, 1989]. Approachesto case-based reasoning rely mainly on psychologicaltheories of human cognition and have led to a widevariety of proposals for the representation, indexingand organization of case libraries, cf. [CBR-91, 1991;CBR-93, 1993].Case-based systems reason by approximation and simi-larity. In order to solve a new case by reusing an exis-ting one from a case library, several reasoning taskshave to be addressed: First, an index is derived fromthe new case by extracting those of its features thatare abstract enough to make a case useful in a varietyof situations as well as concrete enough to be easilyrecognizable in future situations. In most approaches,the index vocabulary is a subset of the vocabulary usedfor the symbolic representation of cases, cf. [Kolodner,1993].The index of the new case is used as a search key onwhich the retrieval of applicable old cases is based.The aim of retrieval is to determine \good cases" e�-ciently in the library|those that make relevant predic-tions about the current case. Besides the need for ane�cient search strategy, the retrieval problem impliesthe matching problem, which is a serious bottleneck forcase-based reasoners, cf.[Kolodner, 1993; Slade, 1989;Riesbeck and Schank, 1989]. As we cannot expectthat features of di�erent cases coincide completely, so-called partial matches have to be computed and caseswith best-matching indices have to be retrieved. Fi-nally, the set of retrieved cases is ordered according toranking heuristics and the \best" case is determined.Research in case-based reasoning proposes various so-lutions to the problems of retrieval, indexing andmatching. A common characteristic of these solutionsis that they are described in an informal way. Thismakes it di�cult to compare the various approaches,to prove their formal properties and to extend themto other applications.Nevertheless, practice imposes the following require-



ments on case-based reasoners:� The behavior of a system should be predictable.It should be possible to verify whether the systemimplements the intended behavior correctly.� The derivation of indexes should be done auto-matic instead of \hand-coded", which is still usualin many approaches.� The retrieval algorithm should �nd a solution to anew case, if this solution exists in the case library.� If no direct solution can be determined, the re-trieval algorithm should determine the case thatbest meets the search criterion.Consequently, this implies the need for case-based rea-soning systems with formal semantics. The retrievalalgorithm should have the following formal properties:� Correctness: The retrieved case is guaranteedto meet the search criterion.� Completeness: Retrieval of existing solutions tonew cases from the case library is ensured.� Complexity: The retrieval algorithm is provedto be e�cient, i.e. it runs in polynomial time.A case-based reasoning system with these propertiescan be expected to meet the challenge of scaling-up:The system's behavior remains predictable, sound ande�cient even when it is applied to large-scale real-world problems. Surprisingly, it turns out that prob-lems like the correctness and completeness of the re-trieval algorithm have not been widely discussed in theliterature on case-based reasoning.The work described in this paper is motivated by re-search in case-based planning. The reuse and modi-�cation of plans is a valuable tool for improving thee�ciency of planning, because it avoids the repetitionof planning e�ort. Therefore, plans that have beenobtained as solutions for planning problems are storedin plan libraries for further use. The retrieval of agood plan from a plan library is identi�ed as beinga serious bottleneck for plan reuse systems in [Nebeland Koehler, 1993a; Nebel and Koehler, 1993b]. Con-sequently, e�cient and theoretically well-founded re-trieval and update procedures for plan libraries haveto be developed.The approach presented in this paper suggests the in-tegration of terminological logics into a hybrid rep-resentation formalism for case-based reasoning. Re-trieval from and updating of case libraries are ground-ed on a clearly de�ned formalism with proper seman-tics. Their behavior becomes predictable and formalproperties like the completeness and soundness of theretrieval algorithm can be proved.

2 THE SOLUTIONWhile case-based reasoning aims at developing a sci-enti�c model of human memory, research in knowledgerepresentation and reasoning has led to concept lan-guages of the KL-ONE family [Brachman, 1978], al-so called terminological logics. Terminological logicssupport a structured representation of abstract knowl-edge. In contrast to earlier representation formalisms,terminological logics possess formal semantics. TheTarski style declarative semantics leads them to beconsidered as sublanguages of predicate logic [Brach-mann and Levesque, 1984]. With that, the mean-ing of expressions within the formalism is clearly de-�ned and it is possible to verify whether or not theknowledge-representation system correctly implementsthe intended behavior. Furthermore, terminologicallogics provide special-purpose inference algorithms likesubsumption and classi�cation. These properties ofterminological logics clearly suggest their use in case-based reasoning.2.1 FORMALIZING CASE-BASEDREASONINGA case represented in a case library consists of threemajor parts, cf. [Kolodner, 1993]:� initial situation: A state description, pre, speci-fying the preconditions, on which the solution rep-resented in the case relies.� resulting situation: The goal state, goal, thatis achieved when the solution is carried out.� solution: A solution S that solves the problemspeci�cation of the case C = hpre; goali.Case-based reasoning starts with a new case in theform of a problem speci�cationCnew = hprenew; goalnewifor which a solution has to be found in the case library.� Given: a new case Cnew� Wanted: a solution Sold from the case libraryTo �nd this solution, a search key is derived from theproblem speci�cation, which has to re
ect the mainproperties of the problem. Usually, the search is donein the state space rather than the solution space. Thismeans, instead of searching the case library directlyfor solutions, it is searched for similar problem speci�-cations. This is justi�ed by the following observation:the solution Sold is the result of a previous problem-solving process, i.e. it solves an old case Cold in thesense that Sold j= Cold



This means, a solution which is applied in an initialsituation satisfying pre achieves a resulting situationsatisfying goal. This suggests a search of the case li-brary for previous problem speci�cations, i.e. old cases,which entail the problem speci�cation of the new casein the sense that each solution for Cold is a solutionfor Cnew: Cold j= CnewIf this relationship between Cold and Cnew holds, thenthe new case has been shown to be an instance of acase from the library. This implies that solving Cold issu�cient for solving Cnew. Consequently, the solutionSold stored in Cold will solve Cnew.2.2 REASONING BY APPROXIMATIONSearching a case library according to the j= relation-ship is obviously too restrictive. Such a search algo-rithm would only retrieve solutions from the case li-brary. But obviously, a \good" case is one that can beeasily adapted to obtain the desired solution. Further-more, the retrieval process is based on an index thatis obtained from Cnew instead of directly taking thespeci�cation of Cnew. Therefore, an index of a caseis computed with the help of an encoding scheme !mapping the caseCnew = hprenew; goalnewito its index!(Cnew) = h!(prenew); !(goalnew)iThe encoding scheme formalizes an abstraction pro-cess: A detailed speci�cation of a particular case ismapped to an abstract index re
ecting the main fea-tures of that case. The degree of abstraction is de-termined by the particular encoding scheme, which isused in the case-based reasoning system. This meansthat di�erent encoding schemes can de�ne di�erent de-grees of abstraction in a case-based reasoning system.The encoding scheme ! has to possess the followingformal property:If Cold ! Cnew then !(Cold)! !(Cnew)This theorem gives a monotonicity property of !. Anexisting subset relationship between the models of thecases Cold and Cnew is preserved as a subset relation-ship between the models of the indices !(Cold) and!(Cnew).If MCold � MCnew then M!(Cold) � M!(Cnew)Thismonotonicity property of the encoding scheme en-sures that an existing solution can be found by search-ing the case library along the j= dimension between in-dices. Note that the inverse of the monotonicity prop-erty does not hold in general. A case retrieved from

the library, the index of which entails the new index,will not, with certainty, provide a solution to the newcase. This re
ects reasoning by approximation. Theretrieval algorithm approximates the j= relationshipbetween the cases when it compares the indices of thecases. Thereby, it extends the solution set computedby the retrieval algorithm.The de�nition of a particular encoding scheme dependson three factors:� the representation formalism for the cases,� the representation formalism for the indices,� the application domain.In Section 3, we illustrate the de�nition of an encod-ing scheme for a case-based planning system. Therepresentation formalism for the cases is a temporalplanning logic. The representation formalism for theindices is a terminological logic. The application do-main comprises planning tasks arising in a subset ofthe UNIX operating system.2.3 REASONING BY SIMILARITYThe second aspect of case-based reasoning is reasoningby similarity. Case-based systems compute the simi-larity of cases by comparing the placement of the casesin the abstraction hierarchy or by computing their dis-tance on a qualitative or quantitative scale, cf. [Kolod-ner, 1993]. A formalization of the notion of similarityis beyond the scope of this paper. Nevertheless, theencoding scheme allows to de�ne when a case is morespeci�c than another one:De�nition 1 A case C1 is de�ned as being more spe-ci�c than a case C2, if !(C1) j= !(C2) holds for theirindices.Remember, that a case contains three major parts: itsinitial situation, its resulting situation and the solu-tion. The entailment relation between cases can there-fore be reduced to relations between initial and result-ing situations. A case is an instance of a stored caseif � the new initial situation entails the old initial sit-uation prenew j= preold, i.e. the solution Sold isapplicable to the new initial situation,� the old resulting situation entails the new result-ing situation goalold j= goalnew, i.e. Sold solves atleast the new problem.Furthermore, each index !(C) = h!(pre); !(goal)icomprises two components, namely the encoding of theinitial situation, pre, and the encoding of the resultingsituation goal. Obviously, testing !(Cold) j= !(Cnew)can be reduced to computing relations between theencodings of both situations:



!(prenew) j= !(preold) and !(goalold ) j= !(goalnew)Strong and weak retrieval algorithms can thus bede�ned. A strong retrieval algorithm determinesreusable cases by testing!(prenew) j= !(preold) and !(goalold ) j= !(goalnew)This guarantees that existing solutions can be foundin the case library. Furthermore, more speci�c casesare retrieved according to de�nition 1.If strong retrieval fails to �nd a more speci�c case, thesearch criterion is replaced by a weaker one: A weakretrieval algorithm can test!(prenew) j= !(preold) or !(goalold ) j= !(goalnew)Thus, we can ground the retrieval of cases on di�erentwell-de�ned relations between indices that possess for-mal semantics. This overcomes the problem of de�ningpartial matches between cases, the semantics of whichremains often unclear.2.4 HYBRID REPRESENTATIONIn this paper, we propose a hybrid representation for-malism for case libraries: The major parts of a case,the case entry, are represented in a formalism thatadequately represents problems and solutions in theunderlying application domain, e.g. the planning for-malism used by a case-based planner.The index of the case is represented as a concept in aterminological logic. The relation j= between indicesis determined by computing the subsumption relation(denoted with v) between concepts. With that, theretrieval of a reusable case from the case library canbe grounded on concept classi�cation.The encoding scheme de�nes the degree of abstractionthat is re
ected in the indices: a given case is mappedto an index re
ecting the main properties of the case.Note that the encoding scheme may map several spe-ci�c cases to the same index. This means, the indexrepresents a description of an abstract class of specif-ic cases occurring in a particular application domain.The case related to this index represents one possiblespeci�c instance of that class.Terminological logics have the following advantages:They provide indices with clearly de�ned semantics.The monotonicity property of the encoding scheme! can be proved. The encoding scheme implementsa representational shift from the vocabulary for thesymbolic representation of cases to the indexing vo-cabulary represented in a terminological logic. Thisleads to a well-de�ned abstraction process. Further-more, the indexing vocabulary can be automaticallybuilt by the case-based reasoning system: If the vo-cabulary for the symbolic representation of cases is a

logical formalism, a case will be represented as a for-mula in this logic. The index of the case is obtainedby a transformation of the formula with the help ofthe encoding scheme. The result is a �rst-order logicformula that can be interpreted as a concept de�nitionin the terminological logic, cf. Section 3.The mathematical properties of various terminologi-cal logics are well understood. In particular, termi-nological languages with decidable subsumption rela-tions have been identi�ed. Remember, that retrievalfrom case libraries must be e�cient, i.e. the complex-ity of the retrieval algorithm must be investigated.The use of a terminological logic with a polynomialsubsumption algorithm ensures that the retrieval al-gorithm runs in polynomial time as well.Most of the indexing schemes used in case-based rea-soning, for example discrimination networks [Feigen-baum, 1963], restrict the case library to have a treestructure. In using terminological logics, case librariesare indexed on a more general lattice structure provid-ed by the subsumption hierarchy.3 AN EXAMPLEThe MRL system [Koehler, 1994a] is the case-basedplanning component of the system PHI [Bauer et al.,1993], a logic-based tool for intelligent help systems.PHI integrates plan generation as well as plan recogni-tion. Plan generation can be done from �rst principlesby planning from scratch and from second principlesby reusing previously generated plans with MRL [Bi-undo et al., 1992]. The example application domain ofPHI is the UNIX mail domain where objects like mes-sages and mailboxes are manipulated by actions likeread, delete, and save.3.1 THE PLANNING LOGICThe logical basis of PHI and MRL is the interval-basedmodal temporal logic LLP [Biundo and Dengler, 1994].LLP provides the modal operators � (next), } (some-times), ut (always) and ; (chop), the binary modal op-erator, which expresses the sequential composition offormulae. As in programming logics, control struc-tures like iterations and conditionals and local vari-ables are available, with values that may vary fromstate to state.Plans are represented by a certain class of LLP formu-lae. They may contain, e.g. basic actions which are ex-pressed by the execute predicate ex, the chop operator,which is used to express the sequential composition ofplans, and control structures.The atomic actions available to the planner are the ele-mentary commands of the unix mail system. They areaxiomatized like assignment statements in program-ming logics. State changes which are caused by exe-



cuting an action are re
ected in a change of the valuesof local variables which represent the mailboxes in themail system. For example, the axiomatization of thedelete-command which deletes a message x in a mail-box mbox reads8x open flag(mbox) = T ^delete flag(msg(x;mbox)) = F ^ex(delete(x;mbox))! � delete flag(msg(x;mbox)) = TThe state of a mailbox is represented with the help of
ags. The precondition of the delete-command is thatthe mailboxmbox is open, i.e. its open flag yields thevalue true (T ) and that the message x has not yet beendeleted, i.e. its delete flag yields the value false (F ).As an e�ect, the action sets the delete flag of messagex in mailboxmbox to the value true in the next state.Planning problems are represented with the help of for-mal plan speci�cations in the logic LLP. They containthe speci�cation of an initial state, the preconditionsof the plan, and the speci�cation of the goals that haveto be achieved by executing the plan.As an example, assume that a planP1 for the planningproblem \read and delete a message m in the mailboxmybox" has to be found. As preconditions, we assumethat the mailbox mybox has already been opened andthat the message m has not yet been deleted. Theformal speci�cation of the preconditions preP1 and thegoals goalP1 in the logic LLP reads as follows:preP1: open flag(mybox) = T ^delete flag(msg(m;mybox)) = FgoalP1: }[read flag(msg(m;mybox)) = T ^}[delete flag(msg(m;mybox)) = T ] ]It should be noted that in using the logic LLP in aplanning system it becomes possible to specify tempo-rary goals with the help of nested sometimes operators,i.e. goals that have to be achieved at some point andnot necessarily in the end, something which could notbe done in the usual STRIPS or TWEAK type plan-ning systems, cf. [Kautz and Selman, 1992]. In theexample, the goal speci�cation requires the messageto be read �rst and then deleted.The plan P1, which solves this planning problem, is asimple sequence containing the actions type and delete:P1: ex(type(m;mybox));ex(delete(m;mybox))To obtain this plan by case-based planning in MRL,appropriate candidate plans have to be retrieved fromthe plan library. In the example, we assume that theplan library contains the candidate plans P2 and P3:P2: if open flag(mbox) = Tthen ex(empty action)

else ex(mail(mbox));ex(type(x;mbox));ex(delete(x;mbox))P3: n := 1 ;while n < length(mbox) doif sender(msg(n;mbox)) = joethen ex(type(n;mbox));ex(delete(n;mbox))else ex(empty action);n := n+ 1od ;The plan P2 is an example of a conditional plan. Itcontains a case analysis on the state of the mailboxmbox: If the mailbox is open, the message x can beread and deleted. If the mailbox is closed, we �rst haveto open it before the plan can be executed. The caseanalysis results from incomplete information about thepreconditions for plan P2:preP2: delete flag(msg(x;mbox)) = FAs a precondition for P2 we only know that the mes-sage has not been deleted, but information about thestate of the mailbox not available.In contrast to the goal speci�cation goalP1, the speci�-cation of goals in goalP2 speci�es no temporary goals,but a conjunctive goal:goalP2: }[read flag(msg(x;mbox)) = T ^delete flag(msg(x;mbox)) = T ]The plan P3 is an example of an iterative plan read-ing all messages from sender joe in the mailbox mbox.The speci�cation of its preconditions and goals con-tains universally quanti�ed formulae:preP3: open flag(mbox) = T ^8x [sender(msg(x;mbox)) = joe! delete flag(msg(x;mbox)) = F ]goalP3: } [8x [sender(msg(x;mbox)) = joe! read flag(msg(x;mbox)) = T ^delete flag(msg(x;mbox)) = T ] ]Only a very restricted syntactic class of LLP formulaeis used for the speci�cation of preconditions and goals.For example, only implicit negation of atomic formulaeoccurs in implications. Furthermore, atomic formulaeare equations assigning constants to terms of a very re-stricted syntactic structure. The term msg(x;mbox)denotes an arbitrary message in a mailbox. Unaryfunctions like read flag and delete flag represent fea-tures of this message. The e�ects of actions are re
ect-ed in changed features.The plans P2 and P3 can be easily adapted in orderto obtain the desired plan P1:



� P1 corresponds to the then-branch of P2 whendeleting the super
uous empty action.� P1 corresponds to the sequential body plan ofP3 when deleting the super
uous iterative con-trol structure and the test on the sender of themessage.Consequently, P2 and P3 should both be retrievedfrom the case library as possible reuse candidates. Fur-thermore, the retrieval algorithm should di�erentiatebetween P2 and P3:On one hand, both plans P2 and P3 are applicable inthe initial state speci�ed for P1 because their precon-ditions are entailed by preP1. On the other hand, P2is more \similar" to the desired plan than the plan P3:it reads and deletes an arbitrary message as requiredin the new case P1, while P3 reads all messages froma particular sender|an additional condition, which isnot required in P1.The identi�cation of P2 and P3 as appropriatereusable cases requires abstraction from� speci�c objects occurring in the speci�cations,� temporary subgoal states,� universally quanti�ed goals.The e�ect of actions which re
ect in a change of fea-tures of a message have to be preserved during theabstraction process.These requirements are re
ected in the de�nition ofthe encoding scheme !, which is used in MRL to mapLLP plan speci�cations to concepts in a terminologicallogic.3.2 THE TERMINOLOGICAL LOGICThe terminological logic ALC [Schmidt-Schau� andSmolka, 1991] is chosen as a starting point for the ter-minological part of the representation formalism forcase libraries because of its expressiveness and math-ematical properties. Concept descriptions in ALC arebuilt from concepts, intersection, complements anduniversal role quanti�cations. The logic possesses adecidable and complete subsumption algorithm whichis PSPACE-complete. This means that deciding sub-sumption in ALC is intractable. Remember that werequired the retrieval algorithm to be e�cient, i.e. torun in polynomial time to cope with the scaling-upproblem. To obtain polynomial complexity, two solu-tions can be adopted:1. Giving up completeness.2. Restricting the terminological logic.Giving up completeness in an application system of-ten also implies giving up correctness, because inabil-ity to detect existing subsumption relations may lead

to incorrect behavior of the system. In particular forcase-based systems, the incompleteness of the retrievalalgorithm leads to the following problems:� Existing cases solving the new case may be notfound in the case library. This can lead to anundesirable computational overhead in case-basedreasoning because the system does not reuse thebest available case during problem solving.� Uncontrolled growth of the case library may oc-cur. Equivalent cases are added to the librarybecause the incomplete subsumption algorithm isunable to recognize the equivalence of indices.Therefore, the second solution is adopted by restrict-ing concept descriptions to a normal form for whicha sound, complete and polynomial subsumption algo-rithm exists. We de�ne a subset of ALC comprising so-called admissible concepts that are consistent conceptdescriptions in conjunctive normal form. They are on-ly built from primitive components, i.e. existential rolerestrictions of the form 9R:C and 9R::C where C isrequired to be a primitive concept and R is restrictedto be a chain of primitive roles. The following sub-sumption algorithm is de�ned for admissible conceptsCa:De�nition 2 SUBS(u; t) : C2a �! ftrue; falsegSUBS(u; t) computes its result using the rules:1z v x; z v y ! z v x ^ y (1)x v z ! x ^ y v z (2)x v z; y v z ! x _ y v z (3)z v x ! z v x _ y (4)x v x (5)Theorem 1 SUBS is sound, complete and decides thesubsumption relation in polynomial time for admissibleconcepts.The proof can be found in [Koehler, 1994b].The expressiveness of admissible concepts is su�cientto adequately represent the mail domain.2 As an ex-ample, consider the LLP formula} read flag(msg(x;mbox)) = TThe interpretation of this formula is a message at acertain position in a particular mailbox at a certainworld state, the read 
ag of which is set to the value1This rule set is equivalent to a sound and complete ruleset for lattices given in [Givan and McAllester, 1992] thatdecides the de�ned inference relation in polynomial time.Note, that SUBS(u; t) is incomplete for arbitrary conceptdescriptions in ALC.2This property may not generalize to other applicationdomains, see Section 5.



true. Figure 1 illustrates a subset of the primitive con-cepts and roles representing the mail domain. Startingwith the concept STATE, role chains can be composed,which describe the state of a particular message at aparticular position in a particular mailbox at a certainworld state. Consequently, the admissible concept9 mbox � pos �mesg � read flag:Tabstracts the LLP example formula.
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Figure 1: A Subset of the Mail Terminology3.3 DEFINING THE ENCODING SCHEMEThe encoding scheme ! maps LLP plan speci�cationsto indices in ALC on the basis of the declarative se-mantics both logics possess. It depends on the sourcelogic LLP as well as on the target logic ALC.LLP plan speci�cations are a restricted class of tempo-ral logic formulae containingmodal operators. In orderto map them to concept descriptions they are trans-lated into �rst-order predicate logic using the methoddeveloped in [Frisch and Scherl, 1991], which has beenextended to LLP in [Koehler and Treinen, 1993]. Theresult of the translation is a formula in a predicatelogic with constraints. The constraint theory repre-sents temporal information, e.g. which subgoal has tohold in a particular state. In a next step, the con-straint theory is eliminated, preserving the satis�abil-ity of the formula. The elimination of the constrainttheory implements a process of temporal abstraction:the temporal information is eliminated from the for-mula.The encoding scheme abstracts from speci�c objectsby replacing constants with existentially quanti�edvariables. Furthermore, universal quanti�cation is re-

placed by the weaker existential quanti�cation. An n-ary function is encoded as an n+1-ary relation. Eachn + 1-ary relation is encoded by n binary relations.These abstraction operations are justi�ed by the re-stricted syntactic structure of terms and formulae.After the abstraction process has been completed, theconjunctive normal form of preconditions and goalsis computed. Of course, the computational e�ort forthis operation grows exponentially with the length ofthe formulae. But remember that the subsumptionalgorithm is only complete for concepts in conjunctivenormal form. Nevertheless, for pragmatic reasons it ismore e�cient to compute the normal form only onceduring the encoding process instead of computing itseveral times during the classi�cation of an index.Finally, the remaining set of formulae is syntacti-cally transformed into sets of formulae of the form�C(x) : 9 y P (x; y) ^Q(y). The declarative semanticsof terminological logics allow primitive concepts to beseen as unary predicates and primitive roles to be seenas binary predicates. This identi�cation can be ex-tended to arbitrary concept descriptions, i.e. to everyconcept C a predicate formula �C(x) can be associat-ed. Consequently, a concept C : 9P:Q corresponds tothe formula �C(x). A model of the formula 9x�C(x)is a model of the concept C and vice versa. In par-ticular, C is unsatis�able if and only if 9x�C(x) isunsatis�able [Hollunder et al., 1990].In the example, the following encoding of precondi-tions and goals is obtained:3!(preP1): 9 mbox � open flag:T u9 mbox � pos �mesg � delete flag:F!(goalP1): 9 mbox � pos �mesg � read flag:T u9 mbox � pos �mesg � delete flag:T!(preP2): 9 mbox � pos �mesg � delete flag:F!(goalP2): 9 mbox � pos �mesg � read flag:T u9 mbox � pos �mesg � delete flag:T!(preP3): 9 mbox � open flag:T u[ 9 mbox � pos �mesg � sender::S t9 mbox � pos �mesg � delete flag:F ]!(goalP3): [ 9 mbox � pos �mesg � sender::S t9 mbox � pos �mesg � delete flag:T ] u[ 9 mbox � pos �mesg � sender::S t9 mbox � pos �mesg � delete flag:T ]3.3.1 Proving the Monotonicity TheoremTo ensure that the retrieval algorithm performs pre-dictably, the monotonicity property has to be proved3TRUE is abbreviated to T, FALSE is abbreviated toF, and SENDER is abbreviated to S.



for the encoding scheme used in MRL.An old plan solving the old planning problemhpreold ; goaloldi is reused as a solution for a new plan-ning problem hprenew; goalnewi in MRL ifprenew ` preold and goalold ` goalnewcan be successfully proved in the logic LLP [Koehler,1994a]. Therefore, we have to prove the following in-stance of the monotonicity theorem:Theorem 2If prenew ` preold then !(prenew) v !(preold) andif goalold ` goalnew then !(goalold ) v !(goalnew).The proof of the theorem can be found in [Koehler,1994b]. The correctness of the encoding scheme usedin MRL relies on the syntactic restrictions which areimposed on terms and formulae. Nevertheless, we be-lieve that the general idea to ground the formalizationof abstraction on the de�nition of an encoding schemeis widely applicable.3.4 FORMALIZING THE RETRIEVALThe results of the encoding process are the admissibleconcepts !(pre) and !(goal) from which the index ofa case is obtained as the pair h!(pre); !(goal)i. Now,the retrieval of a plan from the plan library is formal-ized as follows:Given the description of a new case, the index of thiscase is computed �rst. Then, this index is classi�edin the plan library. Two classi�cation operations areavailable:� strong classi�cation� weak classi�cationStrong classi�cation classi�es the new index by com-puting the required subsumption relations between en-codings of preconditions and goals:!(prenew) v !(preold) and !(goalold) v !(goalnew)The result of the classi�cation process determines theposition of the new index in the plan library. All in-dices that are subsumed by the new index are con-sidered as potential reuse candidates. The plans be-longing to the subsumed indices are assumed to beapplicable in the current initial state and to reach allof the current goals.In the example, strong classi�cation of the new indexh!(preP1); !(goalP1)i inserts this index at the positionshown in Figure 2. Obviously, h!(preP2); !(goalP2)i issubsumed by the new index. According to De�nition 1,the planning problem stored in the plan entry related

to the index !(P2) is more speci�c than the new plan-ning problem that has to be solved. The plan P2 isactivated as a possible reuse candidate and sent to theplan modi�cation module of MRL [Koehler, 1994a].The index of plan P3 does not meet the criteria re-quired by strong classi�cation, since the subsumptiontest between the goal concepts fails. This plan is notconsidered as being similar to the desired plan.
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Figure 2 illustrates the hybrid representation of theplan library in MRL for the example under consid-eration. The terminological logic part supports thestructuring of the plan library. Retrieval and updateare grounded on classi�cation by computing the sub-sumption hierarchy of indices. The planning logic partsupports the representation of planning knowledge inplan entries.3.5 RANKING OF CASESStrong as well as weak classi�cation can retrieve sever-al appropriate reuse candidates from the case library.Consequently, a ranking sequence is needed for thecandidates in order to �nd the best one.Strong classi�cation determines plans from the planlibrary that are supposed� to be applicable in the initial state and� to achieve at least all of the current goals.This implies that the candidate set retrieved by strongclassi�cation may contain plans which achieve super-
uous goals, i.e. goals that are currently unnecessary.Actions achieving these goals have to be eliminatedfrom the reused plan by optimizing it. The rankingof the candidates is therefore grounded on an estima-tion of the optimization e�ort for each candidate. Theranking heuristic estimates the number of super
uousactions that have to be eliminated from the candidateplan.Observe that the subsumption hierarchy for indicesis de�ned such that a plan b1 achieving more atom-ic goals than a plan b2 is placed closer to the bottomconcept than b2. Consequently, the estimated opti-mization e�ort for a plan, the index of which is placedcloser to the bottom concept, is higher than the es-timated optimization e�ort for a plan, the index ofwhich is immediately subsumed by the current index.Therefore, strong classi�cation only adds a case to thesolution set, if its index is immediately subsumed bythe current index.The estimation of the optimization e�ort proceeds asfollows:� The ranking heuristic compares the goal con-cept of the current index !(goalnew) with thegoal concepts of all immediately subsumed indices!(goaloldi ).� It computes the number of primitive components,which occur in !(goaloldi ), but not in !(goalnew).� The case with the smallest number is selectedas the best candidate according to the rankingheuristic.The heuristic estimates the number of atomic subgoalsthat are achieved by a candidate plan but that are

not required in the current plan speci�cation. It as-sumes that this number re
ects the minimal numberof primitive actions in the candidate plan that have tobe eliminated. Therefore, the plan with the smallestnumber is selected as the best reuse candidate and sentto the plan modi�cation module. If several candidatesreceive the same ranking value, one of them is selectedarbitrarily.De�nition 3 Let Cold1 ; : : : ; Coldn be the set of can-didates retrieved by strong classi�cation of !(Cnew).The goal concepts occurring in the indices of the can-didates are !(goalold1 ); : : : ; !(goaloldn ), the goal con-cept occurring in the current index is !(goalnew). Theset of primitive components that occurs in a concept cis denoted by PK[c], while their number is denoted byN[c].The optimization e�ort for each candidate is de�nedasOPT!(goaloldi ) = NhPK[!(goaloldi )] n PK[!(goalnew)]iThe ranking heuristic HOPT selects the candidate withthe smallest optimization e�ort:HOPT = n Coldi jOPT!(goaloldi ) =min�OPT!(goalold1 ); : : : ; OPT!(goaloldn )�oWeak classi�cation determines plans from the plan li-brary that are only supposed to be applicable in theinitial state.The goal concepts of the candidate plans can be relatedto the goal concept of the current case in two ways:1. !(goalnew) v !(goalold)This means that we can expect the candidate planto achieve only a subset of the goals required inthe current case.2. !(goalnew) 6v !(goalold) and!(goalold ) 6v !(goalnew)No subsumption relation holds for the goal con-cepts of the candidate and the current case. Wehave to expect that the candidate achieves oth-er goals than those required in the current planspeci�cation.Therefore, the ranking heuristic for candidates re-trieved by weak classi�cation relies on the followingassumptions:� Every candidate is applicable in the current initialstate.� No candidate achieves all of the current goals, i.e.every candidate has to be modi�ed.Consequently, the heuristic estimates the modi�catione�ort for each candidate as follows:



� The ranking heuristic compares the goal conceptof the current index !(goalnew) with the goal con-cepts !(goaloldi ) of all indices occurring in the so-lution set.� It computes the intersection of the concepts, i.e.the number of primitive components occurring in!(goalnew) as well as in !(goaloldi ).� This number measures the modi�cation e�ort byan estimation of the number of current atomicgoals that are achieved by each candidate.The candidate with the biggest number is selectedas being the best reuse candidate, because it is as-signed the highest \success rate" and therefore itsmodi�cation e�ort is estimated as being minimal. Fur-thermore, the ranking heuristic veri�es whether theranking value of the best candidate exceeds a low-er bound: it requires that at least half of the prim-itive components from !(goalnew) must be containedin !(goaloldi ). If this condition is satis�ed, the rank-ing heuristic assumes that the best candidate achievesat least half of the current atomic goals.4De�nition 4 Let Cold1 ; : : : ; Coldn be the set of candi-dates retrieved by weak classi�cation of !(Cnew). Thegoal concepts occurring in the indices of the candidatesare !(goalold1 ); : : : ; !(goaloldn ), the goal concept oc-curring in the current index is !(goalnew). The set ofprimitive components that occurs in a concept c is de-noted by PK[c], while their number is denoted by N[c].The estimated success rate for each candidate is de-�ned as:MOD!(goaloldi ) =NhPK[!(goaloldi )] \PK[!(goalnew)]iThe ranking heuristicHMOD selects the candidate withthe biggest success rate that exceeds the lower bound:HMOD = n Coldi j MOD!(goaloldi ) =max�MOD!(goalold1 ); : : : ;MOD!(goaloldn )�andMOD!(goaloldi ) � N[!(goalnew )]2 oIf no candidate receives a ranking value which exceedsthe lower bound, all candidates are rejected becausetheir modi�cation e�ort is too costly. In this situa-tion, case-based planning reports a failure and plan-ning from scratch with the PHI planner is activated.The ranking heuristics guide the interaction betweencase-based planning and plan generation, see Figure 3.Plan generation is activated when4The de�nition of an appropriate lower bound may dif-fer for di�erent case-based planning systems.

� no candidate can be retrieved from the library,� the modi�cation e�ort is estimated as being toocostly for all potential candidates.
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activatesFigure 3: Heuristic Guidance of Case-based PlanningThe update of the plan library is activated when� no reusable plan is found and planning fromscratch is performed,� the retrieved plan has to be optimized or modi�ed.During the update of the plan library a new plan en-try is built. Three sources of information are avail-able: the formal plan speci�cation Cnew, the gener-ated or modi�ed plan Snew and the proofs performedduring deductive plan generation and plan modi�ca-tion [Koehler, 1994a]. The plan entry is built out ofCnew, Snew and information that is extracted fromthe proofs. It is related to its index !(Pnew) that wasalready computed and classi�ed during the retrievalprocess. The index determines the position of the newplan entry in the plan library. It is now available for asubsequent case-based planning process.4 IMPLEMENTATIONThe system MRL has been implemented as an inte-grated part of the PHI system in SICSTUS Prolog.The plan library can be static as well as dynamic:A static library comprises user-prede�ned typicalplans. The system retrieves these plans for reuse, butdoes not add new plans to the library. A dynamic planlibrary grows during the lifetime of the system. MRLstarts with an empty library and incrementally addsnew plan entries to it. The system thus automaticallybuilds a taxonomy of abstract descriptions of typicalplanning problems that occur in the application do-main.The application of terminological logics leads to re-markable properties of the system:



The mapping of speci�c planning problems to abstractclasses helps to keep the plan library small. Only onerepresentative for each class is added to the plan li-brary. Instances of planning problems which belong tothe same class can be solved by instantiation or easymodi�cation of the retrieved candidate plan. Further-more, the implementation of the representational shiftfrom speci�c planning problems to abstract problemclasses with the help of the encoding scheme requiresonly marginal computational costs.The polynomial complexity of the subsumption algo-rithms leads to an e�cient retrieval of candidate plansin polynomial time, cf. [Koehler, 1994b].The completeness of the subsumption algorithm en-sures that existing solutions are found in the plan li-brary. This leads to e�ciency gains of the case-basedplanner compared to the generative planner becausethe system can reuse any solution that exists in theplan library.5 RELATED WORKRecently, the representation of plans based on termi-nological knowledge-representation systems has led toseveral approaches, which extend terminological logicswith new application-oriented representational primi-tives for the representation of actions and plans.One such an extension is the system RAT [Heinsohn etal., 1991] which is based on KRIS [Baader et al.,1992]. RAT is able to implement reasoning aboutplans by inferences in the underlying terminologicallogic. The system simulates the execution of plans,veri�es the applicability of plans in particular situa-tions and solves tasks of temporal projection.An application of terminological logics to tasks of planrecognition is developed in T-REX [Weida and Lit-man, 1994]. Plans in T-REX may contain conditionsand iterations as well as non-determinism in the formof disjunctive actions.More complex application domainsmay require the in-tegration of more expressive terminological logics intothe hybrid representation formalism for case libraries.A future direction of work is the integration of stochas-tic approaches and the parallelization of the search.A successful application of a probabilistic method forNP-complete inference problems is described in [Sel-man et al., 1992]. The usefulness of non-systematicsearch strategies in planning is demonstrated in [Lan-gley, 1992; Minton et al., 1992].6 CONCLUSIONWe have presented an application of terminologicallogics as a kind of query language in case-based rea-soning. Indices are built from concept descriptions.

The retrieval and update operations working on caselibraries are formalized as classi�cation operations overthe taxonomy of indices.An example taken from the �eld of case-based plan-ning demonstrates the applicability of the theoreticalframework. The behavior of the case-based plannerbecomes predictable and theoretical properties like thecorrectness, completeness and e�ciency of the retrievalalgorithm can be proved.AcknowledgementsI am indebted to Wolfgang Wahlster for his adviceand support. I wish to thank Hans-J�urgen Pro�tlichwho helped me test the practical feasibility of the ap-proach with the development of a prototypical planlibrary in RAT, and Bernhard Nebel and Hans-J�urgenOhlbach for fruitful discussions regarding the theoret-ical properties of the formalism. Werner Nutt and theanonymous referees made helpful comments on a draftversion of this paper.ReferencesJ.A. Allen, R. Fikes, and E. Sandewall, editors. Pro-ceedings of the 2nd International Conference on Prin-ciples of Knowledge Representation and Reasoning,Cambridge, MA, April 1991. Morgan Kaufmann.F. Baader, B. Hollunder, B. Nebel, H.-J. Pro�tlich,and E. Franconi. An empirical analysis of optimizationtechniques for terminological representation systems,or making KRIS get a move on. In Nebel et al. 1992,pages 270{281.M. Bauer, S. Biundo, D. Dengler, J. Koehler, andG. Paul. PHI - a logic-based tool for intelligent helpsystems. In IJCAI-93, pages 460{466.S. Biundo and D. Dengler. The logical language forplanning LLP. Research Report, German ResearchCenter for Arti�cial Intelligence, 1994.S. Biundo, D. Dengler, and J. Koehler. Deductiveplanning and plan reuse in a command language envi-ronment. In Neumann 1992, pages 628{632.R. Brachman. Structured inheritance networks. InW.Woods and R. Brachman, editors, Research in Nat-ural Language Understanding, pages 36{78. Bolt, Be-ranek, and Newman Inc., Cambridge Mass., 1978.R. Brachmann and H. Levesque. The tractability ofsubsumption in frame based description languages.Proceedings of the 4th National Conference of theAmerican Association for Arti�cial Intelligence, pages34{37, Austin, TX, 1984. MIT Press.CBR-91 Proceedings of the 3rd Case-Based ReasoningWorkshop, Washington, D.C., 1991. Morgan Kauf-man, San Mateo.



CBR-93 Proceedings of the AAAI-93 Workshop onCase-Based Reasoning, number WS-93-01 in AAAITechnical Report, Washington, D.C., 1993. AAAIPress, Menlo Park.E.A. Feigenbaum. The simulation of natural learningbehavior. In E.A. Feigenbaum and J. Feldman, ed-itors, Computers and Thought. Mc Graw-Hill, NewYork, 1963.A. M. Frisch and R. B. Scherl. A general frameworkfor modal deduction. In Allen et al. 1992, pages 196{207.R. Givan and D. McAllester. New results on localinference relations. In Nebel et al. 1992, pages 403{412.J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Prof-itlich. Integration of action representation in termino-logical logics. In C. Peltason, K. Luck, and C. Kin-dermann, editors, Proceedings of the TerminologicalLogic Users Workshop. KIT{Report 95, TU Berlin,Germany, 1991.B. Hollunder, W. Nutt, and M. Schmidt-Schau�.Subsumption algorithms for concept description lan-guages. In L.C. Aiello, editor, Proceedings of the 9thEuropean Conference on Arti�cial Intelligence, pages348{353, Stockholm, Sweden, August 1990. Clays Ltd,England.IJCAI-93 Proceedings of the 13th International JointConference on Arti�cial Intelligence, Chambery,France, August 1993. Morgan Kaufmann.H. Kautz and B. Selman. Planning as satis�ability. InNeumann 1992, pages 359{363.J. Koehler and R. Treinen. Constraint deduction inan interval-based temporal logic. In Working Notesof the AAAI Symposium on Automated Deduction inNonstandard Logics. AAAI Press, Menlo Park, 1993.J. Koehler. Flexible plan reuse in a formal framework.In C. B�ackstr�om and E. Sandewall, editors, CurrentTrends in AI Planning. pages 171{184. IOS Press,Amsterdam, Washington, Tokyo, 1994.J. Koehler. Reuse of Plans in Deductive Planning Sys-tems. PhD thesis, University of Saarland, 1994. inGerman.J. Kolodner. Case-Based Reasoning. Morgan Kauf-man, 1993.P. Langley. Systematic and nonsystematic searchstrategies. In Proceedings of the 1st InternationalConference on Arti�cial Intelligence Planning Sys-tems, pages 145{152,Washington, D.C., 1992. MorganKaufmann, San Mateo.S. Minton, M. Drummond, J. Bresina, and A. Philips.Total order vs. partial order planning: Factors in
u-encing performance. In Nebel et al. 1992, pages 83{92.

B. Nebel and J. Koehler. Plan modi�cation versusplan generation: A complexity-theoretic perspective.In IJCAI-93, pages 1436{1441.B. Nebel and J. Koehler. Plan reuse versus plan gener-ation: A theoretical and empirical analysis. ResearchReport RR-93-33, German Research Center for Arti�-cial Intelligence (DFKI), 1993.B. Nebel, W. Swartout, and C. Rich, editors. Proceed-ings of the 3rd International Conference on Principlesof Knowledge Representation and Reasoning, Cam-bridge, MA, October 1992. Morgan Kaufmann.B. Neumann, editor. Proceedings of the 10th EuropeanConference on Arti�cial Intelligence, Vienna, Austria,August 1992. John Wiley & Sons.C.K. Riesbeck and R.C. Schank. Inside Case-basedReasoning. Lawrence Erlbaum Associates, Hillsdale,New Jersey, 1989.M. Schmidt-Schau� and G. Smolka. Attributive con-cept descriptions with complements. Arti�cial Intelli-gence, 48:1{26, 1991.B. Selman, H. Levesque, and D. Mitchell. A newmethod for solving hard satis�ability problems. InProceedings of the 10th National Conference of theAmerican Association for Arti�cial Intelligence, pages440{446, San Jose, CA, July 1992. MIT Press.S. Slade. Case-based reasoning: A research paradigm.The AI Magazine, 12(1):43{55, 1989.R. Weida and D. Litman. Subsumption and recog-nition of heterogeneous constraint networks. In Pro-ceedings of the Tenth IEEE Conference on Arti�cialIntelligence for Applications, 1994. to appear.


