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Abstract
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We introduce mathematical programming and atomic decomposition as the basic
modal (T-Box) inference techniques for a large class of modal and description logics.
The class of description logics suitable for the proposed methods is strong on the
arithmetical side. In particular there may be complex arithmetical conditions on
sets of accessible worlds (role fillers).

The atomic decomposition technique can deal with set constructors for modal pa-
rameters (role terms) and parameter (role) hierarchies specified in full propositional
logic. Besides the standard modal operators, a number of other constructors can be
added in a relatively straightforward way. Examples are graded modalities (qualified
number restrictions) and also generalized quantifiers like ‘most’, ‘n%’, ‘more’ and
‘many’.

Key words: modal logic, description logic, combination of systems, mathematical
programming

1 Introduction and Overview

Classical propositional logic can not only be used for reasoning about truth
values. It can also be used as a set description language. Predicate symbols are

1 This work was supported by the EPSRC Research Grant GR/L91818 ‘data driven
logic algorithms’
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mapped to sets and the Boolean connectives ∧ (conjunction) ∨ (disjunction),
¬ (negation), ⇒ (implication) are mapped to the set functions intersection,
union, complement and the subset relationship.

Both modal logics and description logics take this set theoretic interpretation
further by introducing new operators on the syntactic side and new struc-
tures on the semantic side. The extra features on the semantic side are binary
relations, called accessibility relations for modal logics, and roles for descrip-
tion logics. The extra features on the syntactic side are quantifiers (modal
operators) which quantify over accessible worlds (role fillers).

Although many modal logics and description logics are syntactic variants of
each other – the description logic ALC, for example, corresponds exactly to
the multi-modal logic Km [22] – their origin is completely different. Modal
logics were introduced to distinguish between formulae which are true just
by chance, and formulae which are necessarily true. Therefore the modal 2-
operator was called the necessitation operator [11,12].

Description logics, on the other hand, are late descendants of Minski’s frames
[18] and Brachman’s KL-ONE [6]. They come in a variety of different versions,
e.g. ALC [24], CLASSIC [7], KRIS [2], LOOM [17] and even in class-based
object oriented formalisms [10]. Common to most of them is the separation
of a description logic database into a so-called T-Box (terminological box)
and a so-called A-Box (assertional box). The T-Box contains specifications
of concepts and roles. For example a T-Box formula

parent =def person ∧ |has-child| ≥ 1 (1)

specifies the concept parent as the set of all persons who have at least one
child. The (multi)-modal logic notation for this formula would be

parent⇔ (person ∧ 〈has-child〉>)

(> stands for ‘truth’. 〈has-child〉 is the parameterized diamond operator.) The
parameter has-child for the modal operator denotes the accessibility relation
(‘role’ in the description logic jargon).

The A-Box in a description logic database, on the other hand, contains in-
formation about instances of the T-Box concepts. For example, from the A-
Box entries Henry: person, and Henry: has-child Mary, one can conclude that
Henry is an instance of the concept parent. From a modal logic point of view,
A-Box instances are names for worlds. An A-Box consistent with a T-Box
describes a partial model for the formulae in the T-Box.

On the T-Box level there are two major reasoning problems. First of all, one
wants to know whether a newly introduced concept definition is consistent
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with the previously introduced ones. For example, if the T-Box contains the
two definitions

male =def person ∧ |has-y-chromosome| ≥ 1 (2)

female =def person ∧ |has-y-chromosome| = 0 (3)

(males are persons with at least one y-chromosome, and females are persons
with no y-chromosome) and we add the new definition

hermaphrodite =def male ∧ female

there is no non-empty extension of hermaphrodite, which usually indicates
errors or misconceptions in the axiomatization of a given domain.

The second inference problem is subsumption (implication). If we have (1) in
our database and we add

grandparent =def person ∧ atleast 1 has-child.parent (4)

(grandparents are persons who have at least one child who is a parent) then
we can, of course, conclude that all grandparents are parents as well, i.e.
grandparent ⇒ parent. Subsumption relations are very useful for structuring
a knowledge base. Finding out all subsumption relations between all concepts
is called classification, and this is the basic operation of all T-Boxes. If the
description logic language has the full classical negation (not all of them have
it) then the subsumption problem ϕ1 ⇒ ϕ2 can be reduced to the consistency
problem for ϕ1 ∧ ¬ϕ2.

In this paper we investigate problems which have been discussed more in the
description logic context than in the modal logic context. Therefore we prefer
using the description logic notions. Table 1 compares the different notions
used by the modal logic community with the corresponding notions used by
the description logic community.

The standard semantics of modal and description logics allows one to translate
all T-Box and A-Box information into first-order predicate logic (FOL). There-
fore description logics, as well as most modal logic, are essentially fragments
of FOL. Since most of them are decidable, they represent proper fragments
of FOL, but they are usually more expressive than propositional logic. Much
effort has been invested in recent years to explore the borderline between
propositional logic and FOL by investigating various versions of description
logics, see [14] for a good summary of recent results.

Most methods for checking consistency of concept formulae and subsumption
between concept formulae are tableau algorithms. Starting with a tableau
entry a : ϕ (the object with name a is an element of the set described by ϕ),
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description logic modal logic
ALC multi-modal logic Km

concept formula modal formula
concept definition modal formula of the kind

concept-name ⇔ formula
concept name predicate symbol
concept extension of a predicate symbol
role name parameter of a parameterized modal operator
role accessibility relation
role term complex parameter of a modal operator
role fillers set of accessible worlds
T-Box set of concept definitions
A-Box entry name of a world
A-Box description of a partial Kripke structure
domain set of worlds
object world
consistency of a satisfiability of a modal formula

concept formula
subsumption between entailment between modal formulae

concept formula
existential quantifier ∃ r.ϕ diamond operator 〈r〉ϕ
universal quantifier ∀ r.ϕ box operator [r]ϕ
number restriction |r| ≥ n simple graded modal operator 〈r〉n>

restriction on the number of
accessible worlds

qualified number restriction graded modal operator 〈r〉nϕ
atmost r n.ϕ

arithmetic constraint (not well investigated)
for the role fillers

Table 1
Corresponding notions for description logics and modal logics

tableau rules are applied to make the information explicit which is implicitly
contained in the input formulae. Conjunctive rules just extend the list of
derived information, whereas disjunctive rules start a case analysis by splitting
the tableau into different branches.

If the consistency problem for the logic is decidable and the tableau algorithm
is well designed then the application of the tableau rules eventually terminates
with obvious contradictions or with open branches representing a model for the
initial formula ϕ. The method is well suited for languages containing mainly
logical operators. As soon as arithmetics comes into play, tableau approaches
become very difficult to use. For example in a concept definition

parents-of-many-boys = parent ∧ |has-son| ≥ 2|has-daughter|

(parents-of-many-boys are parents having more than twice as many sons than
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daughters) the consistency problem amounts to checking whether x ≥ 2y has
a non-negative integer valued solution. This is a trivial check for integer pro-
gramming algorithms, but almost impossible for a tableau method. Therefore
the arithmetic part of most modal and description logics is very weak. They
usually only allow for number restrictions of the kind |r| ≥ n or |r| ≤ n where
n is a number. Qualified number restrictions atmost n r.ϕ (set of objects with
at most n r-role fillers in ϕ) and atleast n r.ϕ (set of objects with at at least
n r-role fillers in ϕ) are also being used.

In this paper we propose using arithmetic equation solving instead of tableau
systems as the basic inference algorithm. It is, however, not the purpose of
this paper to investigate arithmetic equation solving itself; we assume suit-
able algorithms are available (they can actually be downloaded from the in-
ternet). Therefore we do not specify a particular arithmetic language. The
language depends on the available arithmetic equation solver. Most of them
can solve systems of linear equations and in-equations. In this case only addi-
tion, subtraction and multiplication with numbers is allowed. More advanced
systems also allow for certain non-linear terms. The general non-linear Dio-
phantine equation problem, however, is undecidable (Hilbert’s 10th problem
[13]). Therefore the arithmetic language should not be too expressive.

There are only a few requirements about the arithmetic system, which are
important for the purposes of this paper.

• In the basic mode the arithmetic system must accept conjunctions of equa-
tions and in-equations and check whether there is a solution or not. The
solutions themselves are not needed.

• For the subsumption test the arithmetic system must check whether all
solutions of a given (in)equation system E1 are also solutions of another
system E2. If the arithmetic system can deal with dis-equations then this
problem can be reduced to a consistency problem for E1 ∧ ¬E2.

• If the description logic allows for disjunctions in the concept definitions
then the arithmetic system also should be able to deal with disjunctions of
equations and in-equations.

1.1 Atomic Decomposition

In the main part of the paper we show how the consistency and the subsump-
tion problem of concept formulae can be mapped to equation solving problems.
The atomic decomposition technique [21] plays a key role in this process. Since
the technique is not widely known, we give a brief overview.

Atomic decomposition exploits the possibility to decompose finite sets of sets
into mutually disjoint atomic components. These are the atoms of the Boolean
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algebra consisting of the closure of the sets under union, intersection and com-
plement. To illustrate this idea, suppose the two roles has-son and has-daughter
are specified as sub-roles of has-child. From

|has-son| ≥ 2 ∧ |has-daughter| ≥ 3 (5)

one can deduce |has-child| ≥ 5. For each object in the domain the role fillers
of has-son, has-daughter and has-child form three sets, which can overlap in
the most general way as depicted in Figure 1. There are seven different areas

has-child

has-son has-daughter

c

s d

cs cd

sd

csd

Fig. 1. A general set structure

(together with the complement of the hatched areas there are in fact 23 = 8
different areas) named c, s, d, cs, cd, sd, and csd. The informal meaning is

c = children, not sons, not daughters.

s = sons, not children, not daughters.

d = daughters, not children, not sons.

cs = children, which are sons, not daughters.

cd = children, which are daughters, not sons.

sd = sons, which are daughters, not children.

csd = children, which are both sons and daughters.

The original sets can now be obtained from their ‘atomic’ components:

has-child = c ∪ cs ∪ cd ∪ csd
has-son = s ∪ cs ∪ sd ∪ csd

has-daughter = d ∪ cd ∪ sd ∪ csd.

Moreover, since this decomposition is mutually disjoint and exhaustive, the
cardinalities of the sets just add up:

|has-child| = |c| + |cs| + |cd| + |csd|
|has-son| = |s| + |cs| + |sd| + |csd|
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|has-daughter| = |d| + |cd| + |sd| + |csd|.

The relationships between has-child, has-son and has-daughter can actually be
specified in propositional logic:

has-son⇒ has-child sons are children

has-daughter ⇒ has-child daughters are children

has-son ∧ has-daughter⇒⊥ there are no hermaphrodites

has-child ⇒ has-son ∨ has-daughter children consist only

of sons and daughters

(6)

These formulae have three propositional models:

has-child, has-son,¬has-daughter

has-child, has-daughter,¬has-son

¬has-child,¬has-son,¬has-daughter.

They correspond to the two non-empty sets cs and cd in the figure below,
together with the surrounding area.

children

sons daughters

cs cd

The fact that these are the only models means |c| = 0, |s| = 0, |d| = 0,
|sd| = 0, |cd| = 0 and |csd| = 0. The problem of determining whether there
are at least 5 children can now be reformulated

|cs| ≥ 2 ∧ |cd| ≥ 3 ⇒ |cs| + |cd| ≥ 5. (7)

Since the sets are mutually disjoint, the internal structure of ‘cardinality terms’
like |cs| is no longer relevant, and |cs| can be replaced with a non-negative
integer-valued variable xcs. We obtain

xcs ≥ 2 ∧ xcd ≥ 3 ⇒ xcs + xcd ≥ 5. (8)

which is trivial to check.

In [21] this idea was developed into a general methodology for augmenting
formal systems with a Boolean algebra component. The general methodology
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works for formal systems whose language has a notion of (existentially quanti-
fied) variables. A typical example is a mathematical programming system for
solving equations and in-equations. On the syntactic side, this formal system
can be extended with set terms embedded in bridging functions at variable po-
sitions. The bridging functions map objects of one logic to objects of another
logic. For example, if the basic system allows for equations like

2 · x+ 3 · y = 5

then the extended system would allow for equations like

2 · |sons ∪ friends| + 3 · max-age(friends \ sons) = 5.

sons∪friends and friends\sons are Boolean set terms. The cardinality function
|..| and the max-age function are bridging functions. Both map sets to numbers
such that multiplication with 2 and 3 is defined. In the general setting, bridging
functions map the sets to objects in the basic system which make sense there.

The relationships between the sets can be axiomatized in propositional logic.
(6) is an example for such a propositional axiomatization. It exploits the fact
that the elements and connectives of Boolean algebras can always be inter-
preted as sets and the corresponding set operations (Stone’s representation
theorem [25]). With some elementary Boolean algebra theory one can show
that the models of the propositional axiomatization correspond to the atoms
of the Boolean algebra generated by the closure of the sets under union, in-
tersection and complement. 2

This correspondence can be turned into an algorithm for eliminating the
Boolean terms and the bridging functions. In the first step we compute a syn-
tactic representation of the models of the propositional axiomatization AR.
The Boolean terms t can now be decomposed into the atomic components
{m1, . . . , mn} =def {m | m is a model for AR and m satisfies t}. This way all
Boolean terms t embedded in a bridging function f(t) can be rewritten into
f({m1, . . . , mn}). 3

2 A Boolean algebra is a non-empty set equipped with the functions u (meet), t
(join) and ′ (inverse), a smallest element ⊥ and a largest element >. A ≤-relation
is definable as: x ≤ y iff x u y = x. Set algebras where u is intersection, t is union
and ′ is complement and ≤ is the subset relation, is one particular kind of Boolean
algebra. Every Boolean algebra, however, is equivalent to a set algebra. A Boolean
algebra is complete iff all (finite and infinite) joins belong to it. It is atomic iff every
element can be obtained as the join of a set of smallest elements above ⊥, the atoms.
The atoms in set algebras are the singleton sets. Finite Boolean algebras are always
complete and atomic (cf. any textbook on Boolean algebras).
3 The mi are conjunctions (meets) of positive or negative Boolean variables. But
for most purposes it is sufficient to take the mi as names for the models.
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In the next step of the decomposition method we must use an extra assumption
about bridging functions. They must be additive. This means, if two sets x and
y are disjoint then it must be possible to compute f(x∪ y) by first computing
f(x) and f(y) and then joining the results with some combination function.
Examples where this is fulfilled are:

x ∩ y = ∅ ⇒ |x ∪ y| = |x| + |y|

x ∩ y = ∅ ⇒ max-age(x ∪ y) = max(max-age(x),max-age(y))

x ∩ y = ∅ ⇒ average-age(x ∪ y) = |x|average-age(x)+|y|average-age(y)
|x|+|y| .

The additivity of the bridging functions and the fact that the atoms mi denote
all disjoint sets, allows us to rewrite terms f({m1, . . . , mn}) into g(f(m1), . . .,
f(mn)) where g is the composition function.

In the last step we replace terms f(mi) with new variables xf(mi) of the basic
system. (7) → (8) is such a replacement.

The transformations are sound and complete. This means that the original
problem in the mixed language has a solution if and only if the transformed
problem has a solution in the basic system.

1.2 Atomic Decomposition and Role Terms

The atomic decomposition method can be applied to the role part of descrip-
tion logics. On the semantic level the sets which get decomposed are the sets
of role fillers of a given object. On the syntactic side we start by using com-
binations of arithmetic formulae and set terms to specify constraints on role
fillers. Examples are

young-family =def average-age(has-child) ≤ 10

(has-child is a role, average-age is a bridging function.)

poor-family =def max-income(member) ≤ 100

(member is a role, max-income is a bridging function.)

dog-lovers =def |has-dog| ≥ 2 · |has-child|

(dog lovers have more than twice as many dogs than children.)

Relationships between different role terms can be expressed as propositional
axioms. With the atomic decomposition technique we can then reduce the con-
sistency and subsumption problems to arithmetic equation solving problems.
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1.3 Predicate Symbols

The language of constraints on role fillers is, in general, not expressive enough.
Therefore we investigate how various other logical constructs fit into this
framework, and what extra mechanisms are needed to obtain a sound and
complete decision procedure for the consistency and subsumption problem.

In the description logic context predicate symbols (also called concept names)
are names for sets of objects. In the definition

parent =def person ∧ |has-child| ≥ 1

for example, the predicate symbol person may be an undefined symbol. In
this case no particular assumptions about the set of persons are made. If it
is defined elsewhere then the term person has to be replaced by its definition
before any consistency and subsumption test is tried.

Predicate symbols do not interact with the arithmetic expressions. Therefore
the arithmetic algorithms and the algorithms for the predicate symbols (usu-
ally some kind of propositional reasoning) are independent of each other.

1.4 Universal Quantification

In the description logic context, quantification means quantification over role
fillers. For example.

wooden-toy =def toy ∧ ∀ has-part.wooden

defines a wooden toy as a toy whose parts (role fillers for the has-part relation)
are all wooden. ∀ has-part.wooden denotes the set of objects, whose parts are
all in the set of wooden objects. The modal logic version of this definition
would be

wooden-toy⇔ (toy ∧ [has-part]wooden).

The universal quantifiers over role terms with set constructors, or role names,
which are related to other role names via some propositional axioms, must
be decomposed into their atomic components. For example if has-child is de-
composed into has-son and has-daughter then ∀ has-child.ϕ is decomposed into
∀ has-son.ϕ∧∀ has-daughter.ϕ. Decomposed quantifications over the same roles
can be comprised into one single quantification. ((∀ r.ϕ∧∀ r.ψ)⇔∀ r.(ϕ ∧ ψ))
This way, all interactions between different universal quantifications are elim-
inated.
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Universal quantification over role fillers interact in a relatively simple way
with the arithmetic expressions over role terms. If ϕ is inconsistent then ∀ r.ϕ
can only represent a non-empty set if there are no r-role fillers at all. Thus,
∀ r.⊥⇔ |r| = 0. The consistency check therefore first checks the arguments of
universal quantifiers, and adds |r| = 0, if necessary.

As another example, consider

∀ has-child.teacher ∧ ∀ has-daughter.¬teacher.

The decomposition yields

∀ has-son.teacher ∧ ∀ has-daughter.teacher ∧ ∀ has-daughter.¬teacher

which is comprised to

∀ has-son.(teacher ∧ ¬teacher) ∧ ∀ has-daughter.¬teacher

and then simplified to

|has-son| = 0 ∧ ∀ has-daughter.¬teacher.

1.5 Existential Quantification

It turns out that the existential quantifier over role fillers becomes definable
in the language providing role hierarchies, restrictions on the number of role
fillers and the universal quantifier:

∃ r.ψ = ∃r′(r′ ⇒ r) ∧ |r′| ≥ 1 ∧ ∀ r′.ψ

That means for each occurrence ∃ r.ψ of an existential quantifier, one can
introduce a new (Skolemized) role name r′ (which relates a subset of those r
role-fillers lying in ψ) and add the axiom r′ ⇒ r to the role hierarchy. The
actual occurrence of ∃ r.ψ is replaced with |r′| ≥ 1 ∧ ∀ r′.ψ.

1.6 Disjunction and Negation

The algorithms presented below are organized in such a way that disjunctions
can be treated by putting the concept formulae into disjunctive normal form
and treating each disjunct separately.

In the presence of conjunction and disjunction together with both quantifiers,
negation can be moved down to the propositional level (negation normal form).
Therefore no special treatment is necessary for general negation of concept
formulae.
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1.7 Defined Operators

The arithmetic language together with role hierarchies and the standard con-
nectives and quantifiers are expressive enough to define other useful operators.

1.7.1 Qualified Number Restrictions

atleastnr.ϕ (the set of objects with at least n role fillers in ϕ) and atmostnr.ϕ
(the set of all objects with at most n role fillers in ϕ) are the qualified number
restrictions. In our system they can be treated as defined operators:

atleast n r.ϕ ⇔ ∃r′ (r′ ⇒ r) ∧ |r′| ≥ n ∧ ∀ r′.ϕ

atmost n r.ϕ ⇔ ∃r′ (r′ ⇒ r) ∧ |r′| ≤ n ∧ ∀ r′.ϕ ∧ ∀ (r \ r′).¬ϕ.

Again, the new (Skolemized) role names r′ together with the sub-role definition
r′ ⇒ r are added to the role hierarchy. The occurrences of the atleast and
atmost formulae are replaced with the numeric constraints and the universal
quantifications only.

1.7.2 Percentage Operators

Operators like ≥ n%rϕ (set of objects with more than n% of the r-role fillers
in ϕ) become also definable:

≥ n% rϕ⇔∃r′ (r′ ⇒ r) ∧ 100|r′| ≥ n|r| ∧ ∀ r′.ϕ.

In the same way one can define a ‘≤ n%’ operator or a ‘n %’ operator or a
‘most r ϕ’ operator (more than 50%).

1.7.3 The ‘More’ Operator

morerϕsψ denotes the set of objects with more r-role fillers in ϕ than s role-
fillers in ψ. For example more has-daughter blonde has-son brown denotes the
set of objects with more blonde daughters than brown sons. A definition for
this operator is:

more rϕ sψ⇔∃r′, s′ (r′ ⇒ r) ∧ (s′ ⇒ s) ∧ |r′| ≥ |s′| ∧

∀ r′.ϕ ∧ ∧∀ (r \ r′).¬ϕ ∧ ∀ s′.ψ ∧ ∀ (s \ s′).¬ψ

In the above example, r′ would be the blonde daughters and s′ would be the
brown sons. |r′| ≥ |r| requires that there are more of the blonde daughters
than brown sons.
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1.7.4 The ‘Many’ Operator

The meaning of the operator many in, for example, many has-child.teacher
(set of objects with many children which are teacher) is not clear. If there is
just one child, then many certainly should be 100%. If there are some hun-
dred children, then many might only mean a small fraction. Our language is
expressive enough that we need not assume a fixed meaning of many, but can
leave it to the user to define her version of many. A possible definition might
be

many r.ϕ ⇔ ∃r′ (r′ ⇒ r) ∧ ∀ r′.ϕ ∧

|r| ≤ 2 ⇒ |r′| = |r| ∧

3 ≤ |r| ≤ 10 ⇒ |r′| ≥ 0.9|r| ∧

11 ≤ |r| ≤ 100 ⇒ |r′| ≥ 0.5|r| ∧

101 ≤ |r| ⇒ |r′| ≥ 90.

1.8 Other Operators

There are quite a number of other operators discussed in the description logic
literature. We have not yet investigated in detail how these fit into our frame-
work. For example the role composition operator extends the Boolean language
of role terms to the language or relation algebras. Since the whole approach
relies on the decomposition method, and this relies on Stone’s representation
theorem for Boolean algebras, an extension of the decomposition method to
relation algebras is by no means straightforward and yet has to be done.

In the following sections we work out the technical details of the method and
we prove soundness and completeness of the algorithms.

2 Atomic Decomposition

We list the basic definitions and results. The details can be found in [21]. The
presentation of the method is independent of any particular application in
description logics.
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2.1 Syntax of the Languages Involved

We need 3 components in the syntax. The first component of our syntax is
the language LE of some basic system E which we want to augment with a
Boolean component. In our case E are systems of arithmetical equations and
in-equations, but E may be any other suitable formal system.

The second component is the Boolean algebra component. Boolean terms
LB(R) are set terms over a set R of Boolean variables, constructed with
the usual set connectives ∪ (union), ∩ (intersection), ′ (complement), \ (set
difference), etc. In the description logic case, R is the set of role names.

As a bridge between the two languages LE and LB(R) we need a distinguished
set B of bridging functions, different from all other symbols involved. A typical
example for a bridging function is the cardinality function mapping sets to
integers. A bridging function symbol may have any finite arity. Each argument
position, however, can take either a Boolean term as argument, or an LE-term.
For convenience, we assume that a bridging function of arity n + k reserves
the first n arguments for Boolean terms and the remaining k arguments for
LE-terms.

The combined language is defined as follows:

Definition 1 (The combined language LBE(R,B))
If s[x] ∈ LE where x is some term occurring at some positions in s, f ∈ B
with arity n+ k, t1, . . . , tn ∈ LB(R), s1, . . . , sk ∈ LBE(R,B) then
s[x/f(t1, . . . , tn, s1, . . . , sk)] ∈ LBE(R,B). No other terms are in LBE(R,B).

2

LBE(R,B) is essentially like LE , but LE-term positions can be occupied by
LB(R)-terms embedded in a bridging function. The combined language is such
that the Boolean parts and the LE-parts are separated by the functions in B.

Example 2 E = arithmetic, B = {|.|, f, a, c} with the informal meaning: |.|
is the set cardinality function, f means ‘combined fortune’, a means ‘aver-
age income’ and the binary function c means ‘consumption of’. Well formed
LBE(R,B) axioms are now:

|sons ∪ friends| ≥ 5
(There are more than 5 sons and friends.)

f(children) ≥ 100000
(The combined fortune of the children exceeds 100000.)

a(daughters) = 10000
(The average income of the daughters is 10000.)
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c(children ∪ friends, cigarettes) = 0
(The children and friends do not smoke cigarettes.) 2

2.2 Semantics of the Languages Involved

The language LE comes with its natural semantics. The only feature we need is
that an interpretation =E for E maps the free variables and constant symbols
to elements of E’s domain and interprets function symbols as functions in the
usual way. In an arithmetical language, =E may, for example, represent a
solution of an equation system.

The language LB(R) is to be interpreted as a complete and atomic Boolean
algebra usually, but not necessarily, as a set algebra.

The interpretation is therefore a homomorphism =B : LB(R) 7→ A where A
is a complete and atomic Boolean algebra. 4

Since the language LB(R) and LE do not share any symbols, we can define a
combined interpretation =BE as the union of the interpretations =B and =E .
The interpretation of the bridging function symbols also becomes part of =BE .

The interpretation of the bridging function symbols in B can, but need not be
fixed. It must, however, satisfy the additivity axioms (Def. 3) and it must be
type conform. That means for a bridging function symbol f with n Boolean
arguments and m LE-arguments, a combined interpretation =BE(f) must map
tuples consisting of n elements of the Boolean algebra and m elements of E’s
domain to an element of E’s domain.

Definition 3 (Additivity axioms)
The additivity axioms for a bridging function f ∈ F with arity n+ k are:

x ∩ y = ∅ → f(. . . , ti−1, x ∪ y, ti+1, . . .)

= gi(f(. . . , ti−1, x, ti+1, . . .), f(. . . , ti−1, y, ti+1, . . .))

for each i ∈ {1, . . . , n} of the Boolean argument positions, where gi(x, y) is
some term in LE. 2

Definition 4 (Problem specification)
A problem specification (AR,AB, ϕ) now consists of 3 parts

(1) a set AR of propositional axioms over the Boolean symbols R,

4 In many practical applications, A is even finite. We have not investigated the case
where A is not complete or not atomic.
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(2) the bridging function additivity axioms AB (Def. 3),
(3) a LBE(R,B) formula ϕ.

The satisfiability problem is to find out whether such a specification is consis-
tent, i.e. whether it has an interpretation satisfying all 3 parts. 2

The propositional axioms AR can have an ordinary propositional interpreta-
tion where the Boolean variables in R are mapped to binary truth values,
or they can have a more general Boolean algebra interpretation, where the
Boolean variables in R are mapped to the elements of the Boolean algebra.
In the description logic case the desired interpretation is set theoretic, where
the Boolean variables in R are mapped to sets of role fillers. To explain the
exact correlation between these different kinds of interpretations, some basic
Boolean algebra theory (ultrafilters) is necessary. One can prove that for any
kind of atomic Boolean algebra interpretation of AR, there is a one-to-one
correspondence between the propositional models m of AR (m |= AR), and
the atoms of the Boolean algebra. That means a syntactic representation (the
syntactic atoms) of AR’s models can be used to represent the atoms of the
Boolean algebra.

Therefore for every Boolean term t and set theoretic interpretation =:

ϕ= =
⋃

m|=(ϕ∧AR)

m= (9)

where m= means the set theoretic interpretation of the atom corresponding to
the propositional model m. This is the basis for a sequence of transformations
which eliminate the Boolean terms and the bridging functions from a problem
specification (AR,AB, ϕ) and reduce the satisfiability problem to a problem
in the basic language LE.

Definition 5 (Atomic decomposition) Given a problem specification
(AR,AB, ϕ) we define the following sequence of transformations.

(1) Atomic decomposition of Boolean terms:

αAR(p) = {m1, . . . , mn} where p is a Boolean variable

αAR(x ∪ y) =def αAR(x) ∪ αAR(y) and mi |= p ∧ AR

αAR(x ∩ y) =def αAR(x) ∩ αAR(y)

αAR(x′) =def αAR(>) \ αAR(x)

αAR(>) is the set of all models of AR.

Notice that the set connectives at the left-hand side are just term build-
ing functions, whereas at the right-hand side, the real set operations are
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meant.
For a LBE(R,B)-formula ϕ let αAR(ϕ) be the result of applying the

decomposition function αAR to all Boolean terms occurring in ϕ.
(2) Elimination of additivity axioms:

For a decomposed LBE(R,B)-formula αAR(ϕ) let αAB(αAR(ϕ)) be the
result of an exhaustive left to right application of the equations in AB to
αAR(ϕ), taking the sets {m1, . . . , mk} as union terms m1 ∪ . . . ∪mk.

(3) Elimination of the bridging functions:
Finally we define a replacement operation on αAB(αAR(ϕ)) which replaces
all bridging function symbols f with n Boolean and k LE-arguments by
corresponding LE-terms. β introduces for each term f(m1, . . . , mn, . . .)
a new LE-function (or constant) symbol f ′

m1,...,mn
and replaces terms

f(m1, . . . , mn, s1, . . . , sk) with f ′
m1,...,mn

(s1, . . . , sk).
Let αAR,AB(ϕ) be the result of this replacement to αAB(αAR(ϕ)). 2

Theorem 6 (Soundness and completeness)
A problem specification (AR,AB, ϕ) is satisfiable (falsifiable) if and only if
i) AR is satisfiable and ii) the transformed formula αAR,AB(ϕ) is satisfiable
(falsifiable) in the basic system LE. 2

The inference procedure derived from this theorem comprises the following
steps: in order to check satisfiability of a combined specification (AR,AB, ϕ),
first compute the syntactic atoms derived from the propositional models of
AR. If there are no models then the specification is unsatisfiable. If there are
models, decompose the Boolean terms occurring in ϕ into sets of syntactic
atoms. Use the additivity axioms in AB to push the bridging functions down
to the level of single atoms. Then replace the resulting ‘bridging terms’ with
variables or composed LE-terms, and check the result with an E-satisfiability
checker.

If satisfiability in E is decidable we get a decision procedure for the combi-
nation with the Boolean language. Satisfiability for this combination is then
decidable as well.

2.3 Optimizations

A formula with l Boolean variables may, in the worst case, have 2l models.
For all of them one has to generate syntactic atoms. This makes the whole
approach questionable. Fortunately there are some optimizations which can
reduce the number of syntactic atoms considerably.
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Relevancy Principle

A Boolean variable p occurring in the Boolean axioms AR of some problem
specification (AR,AB, ϕ), but not in ϕ does not contribute much to the prob-
lem solution. Boolean variables are implicitly existentially quantified. That
means AR is in fact short for ∃p AR if p does not occur in ϕ. AR is a con-
junction of propositional formulae, and therefore the existentially quantified
p can be eliminated using a quantifier elimination procedure [15]. The result
is some formula AR′ which is equivalent to ∃p AR, but does not contain p. In
the propositional case, elimination of the existentially quantified p amounts
to generating all resolvents with p in the clause form of AR. The resolvents
represent all consequences of p and therefore p is no longer necessary [1].

This way one can have large databases of Boolean axioms, but for the ac-
tual problem at hand, the atomic decomposition takes into account only the
relevant Boolean variables.

Factoring Principle

A Boolean axiomatization AR which can be split into separate parts AR1, . . .,
ARr such that the parts mutually do not share Boolean variables, simplifies
the atomic decomposition as well. The set of propositional models for AR
can be factored into the product M1 × . . .×Mr of the set of models for the
ARi. This means that the algebra A, which is the image of the set theoretic
interpretation of AR can be factored into the product A1×. . .×Ar of algebras.
The atoms of such a product have the form (. . . ,⊥i−1, ai,⊥i+1, . . .) where ai is
an atom of Ai and all other components are the bottom elements of the other
algebras.

If there is no other information about intersections or unions of Boolean terms
from different factors of the product, then this can be exploited for the repre-
sentation of the syntactic atoms. They can have the form (. . . ,⊥, mi,⊥, . . .)
where mi is a syntactic atom of the component Mi. A further simplification
is possible by just storing mi and labelling it with the information ‘belongs to
Mi’.

This reduces the overall number of syntactic atoms from |M1| · . . . · |Mr| to
|M1| + . . .+ |Mr|, which is an exponential improvement.

The meaning of this simplification also makes sense from an application point
of view. As an illustration, consider some AR axiomatizing, say family rela-
tionships, and in addition relationships between the makes of cars. If there are
no axioms saying something about the intersection of people and cars, then
the factoring operation implicitly imposes that there is no object which is at
the same time a person and a car. Therefore the whole Boolean algebra is
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split into the part with sets of people and the part with sets of cars. People
and cars together are represented by tuples in the product algebra. On the
calculus side we therefore get syntactic atoms which represent either people
or cars, but none for the intersection of both.

3 Arithmetic Constraints for Role Fillers

We define different Description Logic languages, starting with a purely arith-
metical part, and then including more operators. With all of them one can
define concepts

c =def ϕ

where c is a concept name and ϕ a concept formula in the corresponding
language (cf. (1) or (2) or (3)).

One important restriction on concept definitions is that the equations c=defϕ can
be used as rewrite rules from left to right such that the rewriting operation
terminates. The rewritten concept definitions are in expanded normal form.
For example the expanded normal form for the two concept definitions

parent =def person ∧ |has-child| ≥ 1

grandparent =def parent ∧ ∃ has-child.parent

is

parent =def person ∧ |has-child| ≥ 1

grandparent =def person ∧ |has-child| ≥ 1 ∧

∃ has-child.(person ∧ |has-child| ≥ 1).

Truly recursive concept definitions, where the rewriting does not terminate,
are possible, but they require a different approach to the one presented in this
paper [20,23]. Therefore we always assume that the concept formulae are in
expanded normal form. (Since the expanded normal form may be exponential,
a clever implementation needs to avoid the expansion.)

The atomic decomposition technique is already a framework for a first ver-
sion of a description logic. The basis is an arithmetic equation solving or a
mathematical programming system. This system is combined with Boolean
role terms. Let us call it DLar (Description Logic with arithmetics and role
terms).

Definition 7 (DLar-syntax) The language primitives consist of a set R of
role names, a set C of concept names and a set B of bridging functions. B
contains the set cardinality function | . . . |.
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A DLar-basis (AR,AB) consists of

(1) a finite set AR of propositional axioms for the role names in R, 5

(2) a finite set AB of additivity axioms for the bridging functions in B, 6 2

The DLar-semantics semantics interprets role terms as binary relations and
concept formulae as sets of objects in some domain.

Definition 8 (DLar-semantics) We assume an interpretation = over some
non-empty domain D= for a DLar-basis to interpret the arithmetic parts of
the language in the natural way (see Section 2.2), and to interpret the bridging
functions also in a natural way, such that the bridging axioms are satisfied.
The definitions specific to DLar are:

• r= ⊆ D= ×D= for every role name r ∈ R,
• r=x =def {y | (x, y) ∈ r=} for every x ∈ D= and r ∈ R,
• if f is a bridging function of arity n + k and r1, . . . , rn are role terms then

(f(r1, . . . , rn, s1, . . . , sk))
=x =def f=(r=x

1 , . . . r=x
n , s=1 , . . . , s

=
k ).

A concept formula ϕ is consistent (or satisfiable) if ϕ= 6= ∅ for some inter-
pretation =.

A concept formula ϕ1 subsumes (entails) a concept formula ϕ2 iff ϕ=
1 ⇒ ϕ=

2

for all interpretations =. 2

The problem of checking consistency of a concept formula ϕ can be solved by
checking the problem specification (AR,AB, ϕ) (Def. 4) for consistency with
the atomic decomposition method.

The problem of checking subsumption between ϕ1 and ϕ2 can be solved by
checking the problem specification (AR,AB, ϕ1 ∧ ¬ϕ2, ) for consistency. (We
assume the underlying arithmetic algorithms can deal with negated formulae.)

Atomic decomposition has previously been used to develop inference algo-
rithms for description logics, for example in [9,8]. In their approach, the con-
cepts themselves are decomposed, not the roles. Since the technique was ap-
plied to a different logic (with inverse roles and arbitrary terminological ax-
ioms), one cannot compare the two approaches directly.

5 AR specifies the set theoretic relationships between the roles, usually, but not
necessarily a subset hierarchy (the ‘role hierarchy’).
6 It might be necessary to include further axioms in AB. For example the correlation
between the cardinality function and, say, a bridging function average-income may
be ∀x |x| = 0 ⇒ average-income(x) = 0. It is quite straightforward to translate
axioms like this into the language of the underlying arithmetic system.
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4 Concept Formulae with Concept Names

The first extension of the language DLar is DLarc, where we allow for propo-
sitional formulae over concept names to occur in concept terms.

Definition 9 (The language DLarc) The language DLarcis like DLar, but
concept formulae ϕ may be of the form ϕa ∧ ϕc where ϕa is an arithmetical
concept term of the language DLar and ϕc is a propositional formula over
concept names.

The DLar semantics works for DLarc as well if concept names are mapped to
subsets of the domain and ϕ=

c is the set theoretic interpretation of ϕc. 2

An example is

busy-academic=def |has-courses|+|has-projects| ≥ 2∧(staff-member∨researcher)

|has-courses|+|has-projects| ≥ 2 is the arithmetic part (ϕa) and (staff-member∨
researcher) the purely propositional part (ϕc).

Since the arithmetic part and the concept name part do not share any symbols,
consistency and subsumption can be checked separately.

Proposition 10 (Consistency and subsumption check for DLarc)
A DLarc-concept formula ϕa ∧ ϕc is consistent iff ϕa is consistent, which can
be checked with the DLar consistency check, and ϕc is consistent, which can
be checked with a propositional satisfiability checker.

A DLarc-concept formula ϕa ∧ ϕc subsumes a concept formula ψa ∧ ψc iff ϕa
subsumes ψa, which can be checked with the DLar-subsumption algorithm, and
ϕc entails ψc as propositional formulae, which can be checked with a proposi-
tional satisfiability checker. 2

Since ϕa and ϕc do not share any non-logical symbols, the proofs are straight-
forward.

5 Concept Formulae with Universal Quantifiers

Universal quantification ∀ r.ϕ expresses properties of role fillers (all r-role
fillers of a given object x must lie in the concept ϕ).

Definition 11 (The language DLarc∀) The language DLarc∀ is like the lan-
guage DLarc, but concept formulae ϕ may be of the kind ϕa ∧ ϕc ∧ ϕ∀ where
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ϕa∧ϕc is a DLarc-concept formulae and ϕ∀ is a conjunction of quantifications
∀ r.ψ where r is a role term and ψ is a DLarc∀-concept formula.

The semantics of ∀ r.ϕ is

(∀ r.ψ)= =def {x ∈ D= | ∀y r=(x, y) ⇒ y ∈ ψ=}.

(∀ r.ψ denotes the set of objects all whose role fillers are in ψ.) 2

Notice that if ϕa consists of conjunctions of expressions of the form |r| ≥ n or
|r| ≤ n, where n is an integer, ϕc is a conjunction of concept names, and role
terms consist of role names only, and the role hierarchy AR is empty then this
language is the logic T F [19,14].

If the atomic decomposition of the role term r is {a1, . . . , an} then

∀ r.ψ⇔ (∀ a1.ψ ∧ . . . ∧ ∀ an.ψ). (10)

Therefore the ϕ∀-part of a DLarc∀-concept formula can be normalized such
that

ϕ∀ = (∀ a1.ϕ1 ∧ . . . ∧ ∀ an.ϕn)
where the ai are symbolic atoms. For example

∀ has-child.teacher ∧ ∀ has-son.male

is normalized to

∀ s.(teacher ∧ male) ∧ ∀ d.teacher
if has-child is decomposed into {s, d}.

Concept formulae ϕ which denote the whole domain in all interpretations,
i.e. ϕ= = >= for all interpretations = are useless tautologies and should be
eliminated. We give a necessary and sufficient criterion for recognizing them.

Theorem 12 (Tautology) A DLarc∀-concept formula ϕ = ϕa∧ϕc∧ϕ∀ where
ϕa is the arithmetic part, ϕc is the propositional part and ϕ∀ are the universal
quantifications, is a tautology in a T-Box (AR,AB), (written |= ϕ 7 ), iff

i) αAR,AB(ϕa) is a tautology in the basic system LE (i.e. all possible assign-
ments to the variables are solutions),

ii) ϕc is a propositional tautology, and
iii) for all ‘∀ r.ψ’ in ϕ∀, ψ is a tautology.

7 We use the symbol |= as a binary relation = |= ϕ (the interpretation = satisfies
ϕ) and as a predicate |= ϕ (ϕ is true in all models).
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PROOF. If all three conditions are satisfied then ϕ is certainly a tautology.
We show that if one of them is not satisfied then ϕ can be interpreted as a
proper subset of the domain of some interpretation.

If αAR,AB(ϕa) is not a tautology, there is a falsifying model for αAR,AB(ϕa). By
Theorem 6 there is a falsifying interpretation =′ for ϕa as well. =′ maps the
symbolic atoms m to subsets of a domain. We now construct an interpretation
= for ϕ where D= = {x} ∪ ⋃

m∈αAR (>)m
=′

for some arbitrary element x and

for all atoms m: m= =def {(x, b) | b ∈ m=′}. This means the m-successors of x are
just those elements assigned to m by =′. This way we get an interpretation
where the role fillers of x falsify ϕa. Thus, ϕ is not a tautology.

If ϕc is not a propositional tautology we can certainly find an interpretation
where ϕ= is a proper subset of the domain.

If for some ‘∀ r.ψ’ in ϕ∀: ψ is not a tautology, there is an interpretation = and
some domain element b 6∈ ψ=. In the same way as in the first case we construct
an interpretation =′ with b as r-successor of some new element x. Then it is
not the case that for all r-successors of x, ψ holds, which means that ϕ is not
a tautology. 2

Definition 13 (Decomposition of universal quantifications)
If ϕ =

∧
r∈R ∀ r.ψr is a concept formula over a DLar-basis (AR,AB), where R

is a set of role terms, we define

αAR(ϕ) =def
∧

m∈
⋃

r∈R
αAR (r)

∀m.αAR(ϕ,m).

where

αAR(ϕ,m) =def
∧

r∈R:m∈αAR (r)

ψr.

2

Lemma 14 The decomposition of the universal quantifications (Def. 13) is
equivalence preserving. That means ϕ= = (αAR(ϕ))= for all interpretations
satisfying (AR,AB). 2

PROOF. The lemma is a consequence of (9) and (10) and (∀ r.ϕ ∧ ∀ r.ψ) ⇔
∀ r.(ϕ ∧ ψ):

First the universal quantifications in ϕ = ∀ r1.ψ1∧. . .∧∀ rn.ψn are decomposed
into their atomic parts:

∀mr11.ψ1 ∧ . . . ∧ ∀mr1k1.ψ1 . . . ∧ ∀mrn1.ψn ∧ . . . ∧ ∀mrnkn.ψn
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where mri1, . . . , mriki
are the atomic components of ri for 1 ≤ i ≤ n. This is

a equivalence preserving transformation (10). Then all quantifications ∀m.ψi
with the same role m are collected in one single quantification with a conjunc-
tion of all the relevant ψi. This is also an equivalence preserving transforma-
tion. And that is the result of the normal form. 2

Universal quantification over an empty set is a tautology, therefore ∀ r.ϕ is
satisfiable even if ϕ is inconsistent. Consequently, if ϕ is inconsistent then the
set or r-role fillers must be empty. |r| = 0 can be added in this case. These
observations lead to the following normal form for DLarc∀-concept formulae.

Definition 15 (DLarc∀-normal form) Let ϕ = ϕa ∧ ϕc ∧ ϕ∀ be a DLarc∀-
concept formula in a T-Box (AR,AB,AC),where ϕa is the arithmetic part, ϕc
the concept name part and ϕ∀ the universal quantifications (all parts may be
empty).

The normal form NFarc∀(ϕ) of ϕ is

NFarc∀(ϕ) =def




α′
AR,AB(ϕa, ϕ∀) ∧ ϕc ∧ α′

AR(ϕ∀) if α′
AR,AB(ϕ) and ϕc

are consistent

⊥ otherwise

where

α′
AR,AB(ϕa, ϕ∀) =def αAR,AB(ϕa) ∧

∧

‘∀m.ψ′’ ∈αAR (ϕ∀,m),NFarc∀(ψ′)=⊥
xm = 0

and

α′
AR(ϕ∀) =def

∧

‘∀m.ψ′’ ∈αAR (ϕ∀,m),ψ=NFarc∀(ψ′)6=⊥,α′
AR,AB (ϕ)6|=(xm=0), 6|=ψ

∀m.ψ. 2

α′
AR,AB(ϕa, ϕ∀) in the normal form NFarc∀(ϕ) is the arithmetic part. It con-

sists of the original decomposed arithmetic part αAR,AB(ϕa) (Def. 5,3) where
the role terms have been replaced by the corresponding arithmetic terms, plus
some equations xm = 0 where xm is the variable introduced for |m|. These
equations come from quantifications ∀ a.ψ with inconsistent ψ, and therefore
there cannot be any m-successors. α′

AR(ϕ∀) is the decomposed and reduced
quantification part where all quantifications over empty atomic role compo-
nents and all tautologies have been eliminated.
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Theorem 16 (Soundness of the NFarc∀-normal form) If the normal
form NFarc∀(ϕ) = ⊥ for a DLarc∀-concept formula ϕ = ϕa ∧ ϕc ∧ ϕ∀ over a
DLar-basis (AR,AB), then ϕ is inconsistent.

PROOF. by induction on the number of nested universal quantifications.
In the base case, ϕ = ϕa ∧ ϕc, either α′

AR,AB(ϕa) is inconsistent or ϕc is
inconsistent. In the first case, ϕa must be inconsistent (Theorem 6), and in
the second case ϕ is inconsistent anyway.

Induction step: If ϕc is inconsistent, then so is ϕ. If αAR,AB(ϕa) is incon-
sistent then ϕa is inconsistent (Theorem 6). If αAR,AB(ϕa) is consistent, but
αAR,AB(ϕa) ∧ ∧

‘∀m.ψ′’ ∈αAR (ϕ∀,m),NFarc∀(ψ′)=⊥ xm = 0 is inconsistent, then

αAR,AB(ϕa) forces the existence of an m-role filler for which the corresponding
NFarc∀(ψ′) = ⊥, and therefore, by the induction hypothesis, ψ is inconsis-
tent. Thus, we find some ∀m.ψ in the decomposition of ϕ∀ with ψ⇔⊥ and
non-empty m-role fillers. This makes ϕ∀ inconsistent. 2

Theorem 17 (Completeness of the NFarc∀-normal form) If the normal
form NFarc∀(ϕ) 6= ⊥ for a DLarc∀-concept formula ϕ = ϕa ∧ ϕc ∧ ϕ∀ over a
DLar-basis (AR,AB), then for every non-empty set D there is an interpreta-
tion = with ϕ= = D (which means in particular that ϕ is consistent).

PROOF. by induction on the number of nested universal quantifications. For
technical reasons, we assume that every propositional part ϕc at all levels of
the formula ϕ has the form p ∧ ϕ′

c where p is a single unique concept name,
not occurring anywhere else in ϕ. This does not change the consistency or
inconsistency of ϕ.

The base case of the induction is again ϕ = ϕa ∧ ϕc. Since αAR,AB(ϕa) is
consistent, there is an interpretation =′ for ϕa (Theorem 6). We define an
interpretation = where the atoms m in the atomic decomposition are inter-
preted as binary relations such that the m-role fillers of the elements in D are
just m=′

. For all x ∈ D let m=x =def m=′
. For p ∧ ϕ′

c we define p= =def D and for
each concept name q in ϕc with q=

′
= 1 let p= =def D and if q=

′
= 0 let p= =def ∅.

This guarantees (ϕa ∧ ϕc)= = D.

Induction Step: Since NFarc∀(ϕ) 6= ⊥, α′
AR,AB(ϕa, ϕ∀)∧ϕc must be consistent.

In the same way as in the base case we construct an interpretation =1 with
(ϕa ∧

∧
‘∀m.ψ′’ ∈αAR (ϕ∀,m),NFarc∀(ψ′)=⊥ xm = 0)=1 = D. Because of Lemma 14

it is sufficient to show that =1 can be extended to some interpretation =k

∀m.ψ′=k = D for all ‘∀m.ψ′’ in αAR(ϕ∀).

If m=1x = ∅ for some (or all ) x ∈ D then x ∈ (∀m.ψ′)=1 because quantifica-
tions over empty sets are always true.
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If m=1x 6= ∅ for some x ∈ D then NFarc∀(ψ′) 6= ⊥ for ‘∀m.ψ′’ ∈ αAR(ϕ∀, m)
(because otherwise xm = 0 would be in the arithmetic part). By the induction
hypothesis there are some interpretations =x with ψ′=x = m=1x . We define a
joint interpretation =2 by requiring m=2 = m=1 ∪ ⋃

xm
=x for each atom m

and q=2 =
⋃
x q

=1 ∪ q=x for each concept name q occurring in both ϕc and ψ.

m=1 and m=2 just contribute different levels to the binary relation associated
with m. Since ϕc = p ∧ ϕ′

c and p does not occur in ψ, ϕ=2
c = ϕ=1

c = D, and a
similar statement is true for the propositional parts in ψ.

Repeating this process for each ∀m.ψ′ we end up with an interpretation =k

with ϕ=k = D. 2

5.1 The Subsumption Test

Testing subsumption means figuring out whether ϕ=
1 ⊆ ϕ=

2 holds for two con-
cept formulae ϕ1 and ϕ2 and for all interpretations =. In our case we make
use of our normal form for concept formulae where the arithmetic informa-
tion is comprised in the arithmetic constraint part and the quantifications are
decomposed into their atomic components. The structure of the normalized
ϕ is ϕ = ϕa ∧ ϕc ∧ ϕ∀ where ϕa is the decomposed arithmetic part, ϕc is a
propositional formula and ϕ∀ contains the decomposed and reduced universal
quantifications.

In order to verify that ϕ1 subsumes ϕ2 we have to prove each conjunctive
part in ϕ2 from ϕ1. The normal form allows us to separate the problem. The
arithmetical part ϕ2a can only follow from the arithmetical part ϕ1a. This,
we assume, can be checked with a corresponding arithmetic algorithm. The
propositional part ϕ2c can only follow from the propositional part ϕ1c, which
can be tested with a propositional satisfiability checker.

Finally, the atomic components ∀m.ψ2 of ϕ2 can follow from corresponding
∀m.ψ1 components in ϕ1∀, if ψ1 subsumes ψ2. Here the algorithm becomes
recursive. There is, however, one other possibility where ∀m.ψ2 is also a con-
sequence of ϕ1, namely if ϕa1 forces xm = 0. Then there are no m-successors,
and ∀m.ψ2 is vacuously true.

Theorem 18 (DLarc∀-subsumption test) For i = 1, 2 let ϕi = ϕia ∧ ϕic ∧
ϕi∀ be consistent concept formulae with normal forms ϕ′

ia ∧ ϕic ∧ ϕ′
i∀.

ϕ1 subsumes ϕ2 if and only if

i) ϕ′
1a entails ϕ′

2a in the basic arithmetic system,
ii) ϕ1c entails ϕ2c in propositional logic, and
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iii) for all ‘∀m.ψ2’ in ϕ′
2∀

a) ϕ′
1a entails xm = 0 or

b) there is some ‘∀m.ψ1’ in ϕ′
1∀ with ψ1 subsumes ψ2.

PROOF. The ‘only-if’-part (soundness) is obvious. For the ‘if’-part (com-
pleteness) we show by induction on the number of nested universal quantifi-
cations in ϕ2, that if one of i), ii), or iii) is violated, there is an interpretation
= with ϕ=

1 6⊆ ϕ=
2 ).

This means, if ϕ=
1 ⊆ ϕ=

2 for all interpretations =, then i), ii) and iii) must be
true, and we can check subsumption by testing i), ii), and iii).

In the base case of the induction, ϕ2 consists of the arithmetical part and the
propositional part (which are independent of each other).

If the decomposed formula ϕ′
1a does not entail ϕ′

2a then ϕ′
1a∧¬ϕ′

2a is consistent
which, by Theorem 6 and a similar construction as in Theorem 17 means that
there is an interpretation = with (ϕ1a∧¬ϕ2a)

= 6= ∅. Thus, ϕ1 cannot subsume
ϕ2.

If the propositional part ϕ1c does not entail ϕ2c then obviously ϕ1 cannot
subsume ϕ2.

Induction Step: The arguments for the arithmetical and propositional parts
are the same as for the base case. For the quantification we have to investigate
the case that iii) is violated: Suppose there is some ‘∀m.ψ2’ in ϕ′

2∀ and ϕ′
1a

does not entail xm = 0, i.e. there is an interpretation with some m-role filler
o′ for some domain object o, and

a) there is no corresponding ‘∀m.ψ1’ in ϕ′
1∀ or

b) there is some ‘∀m.ψ1’ in ϕ′
1∀, but ψ1 does not subsume ψ2.

In the first case there is no restriction about the m-role filler o′. Since all
tautologies have been eliminated from ϕ′

2∀, there is an interpretation = which
places o into ϕ=

1 , but o′ into the complement of ψ=
2 such that o 6∈ ϕ=

2 .

Case b) is a consequence of the induction hypothesis. 2

Example 19 Let us illustrate the subsumption checking procedure with an
example taken from [19], page 80. The task is to show that a concept 8

ϕ2 =def |r| ≥ 3

8 The notation has been adapted to fit into our framework.
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is subsumed by a concept

ϕ1 =def ∀ (r ∩ p).S ∧ ∀ (r ∩ q).¬S ∧ |r ∩ p| ≥ 2 ∧ |r ∩ q| ≥ 2

First of all we need to compute the normal forms for ϕ1 and ϕ2. We begin
with the decomposition of the role set R = {r, p, q} according to Definition 5.
We obtain

αAR(r) = {r, rp, rq, rpq}
αAR(p) = {p, rp, pq, rpq}
αAR(q) = {q, rq, pq, rpq}.

Now we are able to decompose the universal quantifiers in ϕ1 following Defi-
nition 13 into

∀ rp.S ∧ ∀ rpq.(S ∧ ¬S) ∧ ∀ rq.¬S.

Since S ∧ ¬S is inconsistent, we obtain

αAR(ϕ1∀) = ∀ rp.S ∧ ∀ rq.¬S

and the first equation for α′
AR,AB(ϕ1a, ϕ1∀) is xrpq = 0. Using this equation to

simplify the normal form xrp+xrpq ≥ 2∧xrq+xrpq ≥ 2 of |r∩p| ≥ 2∧|r∩q| ≥ 2
we obtain the two in-equations

α′
AR,AB(ϕa, ϕ∀) = xrp ≥ 2 ∧ xrq ≥ 2 ∧ xrpq = 0.

Normalizing ϕ2 leads to a single in-equation

NFarc∀(ϕ2) = α′
AR,AB(ϕ2a, ϕ2∀) = xr + xrp + xrq + xrpq ≥ 3.

Since ϕ2c and ϕ2∀ are empty, it remains to prove that

xrp ≥ 2 ∧ xrq ≥ 2 ⇒ xr + xrp + xrq + xrpq ≥ 3

is valid, and this is obvious. 2

The constraints on the number of role fillers expressible inDLarc∀ cannot relate
role fillers at different levels of the quantification. For example the represen-
tation of ‘the set of people with more grandchildren than children’ requires
an expression like |has-child; has-child| ≤ |has-child| or a kind of aggregation
functions which can lead to undecidability [5].
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6 Concept Formulae with Existential Quantifiers

The existential quantifier ∃ r.ψ postulates the existence of an r-role filler in the
concept ψ. As already mentioned, this quantifier is definable in our language:

∃ r.ψ = ∃r′(r′ ⇒ r) ∧ |r′| ≥ 1 ∧ ∀ r′.ψ.

Therefore a language DLarc∀∃ with an existential quantification is convenient,
but theoretically not necessary.

For each occurrence ∃ r.ψ of an existential quantifier, one introduces a new
(Skolemized) role name r′ (which relates a subset of those r role-fillers lying
in ψ) and adds the axiom r′ ⇒ r to the role hierarchy. The actual occurrence
of ∃ r.ψ is replaced with |r′| ≥ 1 ∧ ∀ r′.ψ.

It should be noted that this extension to the role hierarchy is only local to the
nesting of the universal quantifiers. For each ∀ s.ϕ containing an existential
quantifier in the top level of ϕ, one can have a local extension of the role
hierarchy. This way exponentially many atoms in the atomic decomposition
of the role terms can be avoided. The assumption behind this optimization is
that role fillers in different quantifications have nothing in common.

Example 20 From the information

ϕ = ∃ has-child.(male ∧ teacher) ∧ ∃ has-child.(¬male ∧ teacher) ∧

|has-child| ≤ 2

one can conclude

ψ = ∀ has-child.teacher

because there are at most (in fact exactly) two children, and one must be the
male and one must be the female child, and both are teachers.

The existential quantifiers are eliminated by introducing two new roles c1 ⇒
has-child and c2 ⇒ has-child.

∃ has-child.(male ∧ teacher) becomes |c1| ≥ 1 ∧ ∀ c1.(male ∧ teacher)

∃ has-child.(¬male ∧ teacher) becomes |c2| ≥ 1 ∧ ∀ c2.(¬male ∧ teacher).

Since (male∧teacher) and (¬male∧teacher) are inconsistent, the intersection
of c1 and c2 is empty, which will be found out during the DLarc∀-normal form
computation (Def. 15). Taking this and the hierarchy axioms into account, the
decomposition of has-child therefore yields just {c1, c2, r} where r stands for
‘all the rest’.
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The DLarc∀-normal form of ϕ is then

ϕ′ = xc1 ≥ 1 ∧ xc2 ≥ 1 ∧ (xc1 + xc2 + xc3) ≤ 2 ∧

∀ c1.(male ∧ teacher) ∧ ∀ c2.(¬male ∧ teacher),

which obviously implies xr = 0.

The DLarc∀-normal form of the first second formula ∀ has-child.teacher is

∀ c1.teacher ∧ ∀ c2.teacher ∧ ∀ r.teacher).

In order to check that ϕ subsumes ψ, one has to prove recursively every quan-
tification in ψ′ from the corresponding quantification in ϕ′, which is trivial for
the first two ones, or to check whether ϕ′ implies that there are no role fillers,
which is true for the third quantification in ψ′ because xr = 0 is a consequence
of ϕ′. 2

7 Concept Formulae with Disjunction and Negation

A straightforward way to handle disjunctions is to generate a disjunctive nor-
mal form and to treat the disjuncts, which are actually DLarc∀∃-formulae, by
the DLarc∀∃ algorithms: a concept formula is consistent iff at least one disjunct
in the disjunctive normal form is consistent. A concept formula ϕ1 subsumes
a concept formula ϕ2 iff one disjunct in the disjunctive normal form of ϕ2 is
subsumed by all disjuncts in the disjunctive normal form of ϕ1.

If conjunction, disjunction, both quantifiers, negation of arithmetic expres-
sions and negation of concept names are available, then full negation can be
treated by putting a concept formula in negation normal form where all nega-
tion symbols are in front of concept names or in dis-equations. This way the
consistency test with full negation can be reduced to the consistency test for
the language DLarc∀∃ with disjunction. Moreover, the subsumption test for ϕ1

and ϕ2 can be reduced to the consistency test for ϕ1 ∧ ¬ϕ2.

8 Other Operators in the Language

Quite a number of other operators can be added to our language without
changing the algorithms.
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8.1 Number-Valued Functional Roles (Features)

These are just functions mapping objects to numbers. They can only appear
in the arithmetic part of the language, and there they are treated as ordi-
nary arithmetical variables. An example for a number-valued functional role
is cubic-capacity in the definition

500er =def car ∧ cubic-capacity = 500 · |has-cylinder|. (11)

(500er is the set of cars with cubic capacity of 500 cc per cylinder.)

If only numeric features occur in the arithmetic part then DLarc∀∃ is almost
like Baader and Hanschke’s ALC(D), ALC with the concrete domain D = real
numbers [3]. The difference is our treatment of the existential quantifier, which
introduces a numeric constraint for the role fillers. Therefore the consistency
and subsumption checking algorithms are very different.

Baader and Sattler have investigated an extension of this language in which
auxiliary variables can be used to link different features at different levels of the
quantifications. For example ↓ x (2x = age∧∀ has-child.x = age) specifies the
set of objects which are twice as old as their children. x serves as an auxiliary
variable and links the age-feature of the object with the age-feature of the
object’s children. We have not yet investigated how this language extension
fits into our approach. It is certainly not straightforward because consistency
is undecidable in this language [4].

8.2 Other Functional Roles

Functional roles which have exactly (or at most) one role filler can be defined
using arithmetic constraints and the universal quantifier.

|has-name| = 1 ∧ ∀ has-name.name

specifies a functional role has-name mapping objects to objects in the set
name.

Thus, functional roles can be treated with the mechanisms available for uni-
versal quantifiers and arithmetics. In special cases, however, it might be more
efficient to treat functional roles in a special way.
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8.3 Qualified Number Restrictions

Qualified number restrictions can be introduced as defined operators:

atleast n r.ϕ ⇔ ∃r′ r′ ⇒ r ∧ |r′| ≥ n ∧ ∀ r′.ϕ

atmost n r.ϕ ⇔ ∃r′ r′ ⇒ r ∧ |r′| ≤ n ∧ ∀ r′.ϕ ∧ ∀ (r \ r′).¬ϕ.

The new roles are Skolemized and the hierarchy information r′ ⇒ r is added
to the role hierarchy in the same way as for the existential quantifier.

Example 21 Let

A =




(1) atleast 20 >.p

(2) atleast 20 >.q

(3) |>| ≤ 30

(4) atmost 9 >.(p ∧ q).




An intuitive interpretation of the example could be: there are atleast 20 horses
with white colour (p), there are atleast 20 horses with black colour (q), and
there are atmost 30 horses in all. Therefore there must be atleast 10 zebras
(p ∧ q). The last statement is the negation of this theorem. (> denotes the
universal relation).

The elimination of the number restriction operators yields

A′ =




(1′) |R| ≥ 20 ∧ ∀R.p

(2′) |S| ≥ 20 ∧ ∀S.q

(3′) |>| ≤ 30

(4′) |T | ≤ 9 ∧ ∀T.(p ∧ q) ∧ ∀ (> \ T ).¬(p ∧ q)




The decomposition of R, S and T generates the 8 atoms r, s, t, rs, rt, st, rst, c
(c stands for the complement of R ∪ S ∪ T ). We use the same names for the
generated non-negative integer variables.

From (1′) we obtain
(1′′) = r + rs+ rt+ rst ≥ 20 and ∀ {r, rs, rt, rst}.p.
From (2′) we obtain
(2′′) = s+ rs+ st + rst ≥ 20 and ∀ {s, rs, st, rst}.q.
From (3′) we obtain
(3′′) = r + s+ t+ rs+ rt+ st + rst+ c ≤ 30

From (4′) we obtain
(4′′) = t+rt+st+rst ≤ 9 and ∀ {t, rt, st, rst}.(p ∧ q) and ∀ {r, s, rs, c}.¬(p ∧ q).
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The rs-part of the universal quantifications in (1′′), (2′′) and (4′′) are contra-
dictory. Therefore rs = 0 must hold. Using this, we get a simplified in-equation
system:

r + rt+ rst ≥ 20

s+ st+ rst ≥ 20

r + s+ t+ rt+ st+ rst+ c ≤ 30

t+ rt+ st+ rst ≤ 9

which is inconsistent. 2

8.4 Generalized Quantifiers

of the form n%rϕ and ≥ n%rϕ and ≤ n%rϕ where n is a number between 0
and 100, can also be defined:

n%rϕ = ∃r′ r′ ⇒ r ∧ 100|r′| = n|r| ∧ ∀ r′.ϕ ∧ ∀ (r′ \ r).¬ϕ

≥ n%rϕ = ∃r′ r′ ⇒ r ∧ 100|r′| ≥ n|r| ∧ ∀ r′.ϕ

≤ n%rϕ = ∃r′ r′ ⇒ r ∧ 100|r′| ≤ n|r| ∧ ∀ r′.ϕ ∧ ∀ (r′ \ r).¬ϕ.

most r ϕ in the meaning ‘at least 50%’ is a special case of a percentage
operator.

As we have seen in the introduction, even operators like more and many r ϕ
are definable, although not in a standard way.

9 Problematic Features of Description Logics

A number of operators and features of modal and description logics can be
found in the literature, whose integration into our framework is more difficult
and goes beyond the scope of this paper. Role conjunction and role inverse
require role terms which are no longer Boolean. To deal with these kind of
operators, the atomic decomposition technique has to be extended to more
expressive algebras than Boolean algebras.

Roles with special properties (reflexivity, symmetry, transitivity) are also of
great interest for description logics. The has-part relation, for example, which
is very useful in technical domains, is transitive [16].

The algorithms presented above depend very much on the fact that the quan-
tifiers ∀ r.ϕ and ∃ r.ψ over ordinary role terms with no special properties define
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levels of role fillers, which correspond to the syntactic structure of nested role
terms. If the roles have special properties then the levels get mixed. Transi-
tivity in particular reduces all levels to just one. There is no straightforward
way to extend the algorithms to deal with these cases, but it does not seem
impossible.

10 Summary

We presented a method for developing modal and description logics together
with T-Box consistency and subsumption algorithms, where the basic infer-
ence engine is arithmetic equation solving (mathematical programming). The
key technique, which allows one to reduce the consistency and subsumption
problem to arithmetic equation solving, is atomic decomposition of Boolean
role terms embedded in bridging functions which map role fillers to numbers.
Therefore the basic language in our approach can already deal with role hier-
archies specified in propositional logic, role terms with set constructors, and
arithmetic constraints on numeric features of role fillers.

With a few extra mechanisms one can integrate many of the standard opera-
tors in description logics, in particular quantification over role fillers, disjunc-
tion and negation. The extended system with all these features is expressive
enough to treat a number of operators as defined operators, in particular
qualified number restrictions, generalized quantifiers like n%rϕ or most or
more or many. The decision problem for the languages with these operators
is therefore reduced to the decision problem for linear Diophantine equation
and in-equation systems, which is decidable.

The complexity of the algorithms depends on the expressiveness of the basic
arithmetic language, which may even be undecidable, and on the structure of
the atomic decomposition, which may be exponential. There are, however, var-
ious optimizations of the algorithms, which reduce the complexity enormously.
For example, if there is no role hierarchy at all, then the atomic decomposition
becomes trivial. Each role name is mapped to itself. On the other hand, the
more axioms there are to restrict the role hierarchy, the less models they have
and the less atoms are generated. More information yields less complexity in
this case.

Given the basic idea of using atomic decomposition to reduce the consistency
and subsumption tests to arithmetic problems, it was quite straightforward
to adapt the main algorithms to the standard operators for description logics.
It is not yet clear, how to extend the method to other operators, in partic-
ular to more complex role constructors. Many interesting problems with this
framework still need to be solved.
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